Journal of Neurocytology

, Volume 12, Issue 2, pp 213–241 | Cite as

The fine structure of neuroglia in the lamina ganglionaris of the housefly,Musca domestica L.

  • Richard L. Saint Marie
  • Stanley D. Carlson


Six morphologically distinct glial cell layers are described in the housefly lamina ganglionaris, a region previously thought to be composed of only three. 1. The external glial layer abuts the basement membrane of the retina. The cells of this layer have a highly involuted surface membrane and an abundance of ribosomes and rough endoplasmic reticulum (ER) throughout their cytoplasm. They envelop the traversing photoreceptor and mechanoreceptor axons as well as the large tracheoblast cells of the fenestrated layer. They are referred to as thefenestrated layer glia. 2. The second glial layer is composed of large, horizontally elongated cells with large elongate nuclei. They contain large membrane-bounded vacuoles and extensive arrays of parallel-running microtubules and smooth ER. These glia invest the photoreceptor axons through much of the multiple chiasmatic (pseudocartridge) region and are thus designated as thepseudocartridge glia. 3–4.Satellite glia comprise the third and fourth glial layers. Thin cytoplasmic processes of these multipolar glia intervene between the tightly packed monopolar neuron somata and the photoreceptor axons of the nuclear layer. The satellite glia are distinguished into two sub-groups: distal and proximal. The distal satellite glia are exclusively responsible for the large glial invaginations of the type I monopolar cell bodies. Multilaminated processes of the proximal layer of satellite glia surround the photoreceptor axons and the neurite neck of the monopolar neurons prior to their entry into the plexiform layer. The proximal satellite glia also contain prominent lipid deposits. 5.Epithelial glia are columnar cells that occupy the plexiform layer. They envelop the optic cartridges of the neuropil and are the substrate for two characteristic glial-neuronal invaginations; i.e. the capitate projection and the ‘gnarl’. The cytoplasm of the epithelial glia is electron dense and contains numerous stacked arrays of infolded membrane. 6.Marginal glia form the proximal boundary of the optic neuropil. They invest the axons entering or leaving through the base of the lamina ganglionaris. Marginal glia contain large numbers of parallel microtubules and numerous polyribosomes. Fine structural evidence is presented relevant to the role of these six glial layers in the maintenance of ionic and metabolic homeostasis across the retina-lamina barrier.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Berridge, M. J. &Oschman, J. L. (1972)Transporting Epithelia New York: Academic Press.Google Scholar
  2. Boschek, C. B. (1971) On the fine structure of the peripheral retina and lamina ganglionaris of the fly,Musca domestica. Zeitschrift für Zellforschung und mikroskopische Anatomie118, 369–409.Google Scholar
  3. Braitenberg, V. (1967) Patterns of projection in the visual system of the fly. I. Retina-lamina projections.Experimental Brain Research 3, 271–98.Google Scholar
  4. Burkhardt, W. &Braitenberg, V. (1976) Some peculiar synaptic complexes in the first visual ganglion of the flyMusca domestica.Cell and Tissue Research 173, 287–308.Google Scholar
  5. Burtt, E. T. &Catton, W. T. (1964) The potential profile of the insect compound eye and optic lobe.Journal of Insect Physiology 10, 689–710.Google Scholar
  6. Cajal, S. R. (1909) Nota sobre la estructura de la retina de la mosca (M. vomitoria L.).Trabajos del Laboratorio de Investigaciones Biológica de la Universad de Madrid 7, 217–57.Google Scholar
  7. Campos-Ortega, J. A. &Strausfeld, N. J. (1973) Synaptic connections of intrinsic cells and basket arborizations in the external plexiform layer of the fly's eye.Brain Research 59, 119–36.Google Scholar
  8. Chi, C. (1976) Electron microscopy of the peripheral retina and first optic neuropile of the housefly (Musca domestica L.). Doctoral thesis, University of Wisconsin, Madison.Google Scholar
  9. Chi, C. &Carlson, S. D. (1976) The housefly interfacetal hair.Cell and Tissue Research 166, 353–63.Google Scholar
  10. Chi, C. &Carlson, S. D. (1980a) Intercellular junctions in the lamina ganglionaris of the housefly (Musca domestica L.).Investigative Ophthalmology and Visual Science 11, Suppl. 245.Google Scholar
  11. Chi, C. &Carlson, S. D. (1980b) Membrane specializations in the first optic neuropil of the housefly,Musca domestica L. I. Junctions between neurons.Journal of Neurocytology 9, 429–49.Google Scholar
  12. Chi, C. &Carlson, S. D. (1980c) Membrane specializations in the first optic neuropil of the housefly,Musca domestica L. II. Junctions between glial cells.Journal of Neurocytology 9, 451–69.Google Scholar
  13. Cosens, D. J. (1967) Extracellular potentials in the locust eye and optic lobe.Journal of Insect Physiology 13, 1373–86.Google Scholar
  14. Elofsson, R. &Klemm, N. (1972) Monoamine-containing neurons in the optic ganglia of crustaceans and insects.Zeitschrift für Zellforschung und mikroskopische Anatomie 133, 475–99.Google Scholar
  15. Elofsson, R., Nässel, D. &Myhrberg, H. (1977) A catecholaminergic neuron connecting the first two optic neuropiles (lamina ganglionaris and medulla externa) of the crayfishPacifastacus leniusculus.Cell and Tissue Research 182, 287–97.Google Scholar
  16. Fröhlich, A. &Meinertzhagen, I. A. (1982) Synaptogenesis in the first optic neuropile of the fly's visual system.Journal of Neurocytology 11, 159–80.Google Scholar
  17. Griffiths, G. W. (1979) Transport of glial cell acid phosphatase by endoplasmic reticulum into damaged axons.Journal of Cell Science 36, 361–89.Google Scholar
  18. Heisenberg, M. (1971) Separation of receptor and lamina potentials in the electroretinogram of normal and mutantDrosophila.Journal of Experimental Biology 55, 85–100.Google Scholar
  19. Karnovsky, M. J. (1967) The ultrastructural basis of capillary permeability studied with peroxidase as a tracer.Journal of Cell Biology 35, 213–36.Google Scholar
  20. Kirschfeld, K. (1967) Die projektion der optischen umweit von Musca.Experimental Brain Research 3, 248–70.Google Scholar
  21. Lane, N. J. (1974) The organization of insect nervous systems. InInsect Neurobiology (edited byTreherne, J. E.), pp 1–71. Amsterdam: North-Holland.Google Scholar
  22. Lane, N. J. (1981) Vertebrate-like tight junctions in the insect eye.Experimental Cell Research 132, 482–8.Google Scholar
  23. Leutscher-Hazelhoff, J. T. &Kuiper, J. W. (1964) Responses of the blowflyCalliphora erythrocephala to light flashes and to sinusoidally modulated light.Documenta Ophthalmologica 18, 275–83.Google Scholar
  24. Mollenhauer, H. H. (1964) Plastic embedding mixtures for use in electron microscopy.Stain Technology 39, 111–4.Google Scholar
  25. Mote, M. I. (1970) Focal recordings of response evoked by light in the lamina ganglionaris of the flySarcophaga bullata.Journal of Experimental Zoology 175, 149–57.Google Scholar
  26. Nicol, D. &Meinertzhagen, I. A. (1982) An analysis of the number and composition of the synaptic populations formed by photoreceptors of the fly.Journal of Comparative Neurology 207, 29–44.Google Scholar
  27. Radojcic, T. &Pentreath, V. W. (1979) Invertebrate glia.Progress in Neurobiology 12, 115–79.Google Scholar
  28. Roots, B. I. (1978) A phylogenetic approach to the anatomy of glia. InDynamic Properties of Glial Cells (edited bySchoffeniels, E., Franck, B., Hertz, L. andTower, D. B.), pp. 45–54. New York: Pergamon.Google Scholar
  29. Saint Marie, R. L. (1981) A thin-section and freeze-fracture study of intercellular junctions and synaptic vesicle activity in the first optic neuropil of the housefly compound eye. Doctoral thesis, University of Wisconsin, Madison.Google Scholar
  30. Saint Marie, R. L. &Carlson, S. D. (1980) Glia-glial and glia-axonal tight junctions: possible substrate for lateral electrical inhibition at the fly photoreceptor synapse.Investigative Ophthalmology and Visual Science 11, Suppl. 246.Google Scholar
  31. Saint Marie, R. L. &Carlson, S. D. (1982) Synaptic vesicle activity in stimulated and unstimulated photoreceptor axons in the housefly. A freeze-fracture study.Journal of Neurocytology 11, 747–61.Google Scholar
  32. Saint Marie, R. L. &Carlson, S. D. (1983) Glial membrane specializations and the compartmentalization of the lamina ganglionaris of the housefly compound eye.Journal of Neurocytology 12, 243–75.Google Scholar
  33. Shaw, S. R. (1975) Retinal resistance barriers and electrical lateral inhibition.Nature 255, 480–3.Google Scholar
  34. Shaw, S. R. (1977) Restricted diffusion and extracellular space in the insect retina.Journal of Comparative Physiology 113, 257–82.Google Scholar
  35. Shaw, S. R. (1978) The extracellular space and blood-eye barrier in an insect retina: an ultrastructural study.Cell and Tissue Research 188, 35–61.Google Scholar
  36. Shaw, S. R. (1979) Signal transmission by graded slow potentials in the arthropod peripheral visual system. InThe Neurosciences: Fourth Study Program (edited bySchmitt, F. O. andWorden, F. G.), pp. 275–95. Cambridge, Mass: MIT Press.Google Scholar
  37. Shaw, S. R. &Stowe, S. (1982) Freeze-fracture evidence for gap junctions connecting the axon terminals of Dipteran photoreceptors.Journal of Cell Science 53, 115–141.Google Scholar
  38. Smith, D. S. &Treherne, J. E. (1963) Functional aspects of the organization of the insect nervous system.Advances in Insect Physiology 1, 401–84.Google Scholar
  39. Strausfeld, N. J. (1971) The organization of the insect visual system (light microscopy). I. Projections and arrangements of neurons in the lamina ganglionaris of Diptera.Zeitschrift für Zellforschung und mikroskopische Anatomie 121, 377–441.Google Scholar
  40. Strausfeld, N. J. (1976a) Mosaic organizations, layers and visual pathways in the insect brain. InNeural Principles in Vision (edited byZettler, J. andWeiler, R.), pp. 245–79. Berlin: Springer-Verlag.Google Scholar
  41. Strausfeld, N. J. (1976b)Atlas of an Insect Brain Berlin: Springer-Verlag.Google Scholar
  42. Strausfeld, N. J. &Campos-Ortega, J. A. (1977) Vision in insects: pathways possibly underlying neural adaptation and lateral inhibition.Science 195, 894–7.Google Scholar
  43. Strausfeld, N. J. &Nässel, D. R. (1981) Neuroarchitecture of brain regions that subserve the compound eye of Crustacea and insects. InHandbook of Sensory Physiology Vol. VII/6B (edited byAutrum, H.), pp. 1–132. Berlin: Springer-Verlag.Google Scholar
  44. Treherne, J. E. (1960) The nutrition of the central nervous system in the cockroach,Periplaneta americana L.Journal of Experimental Biology 37, 513–33.Google Scholar
  45. Trujillo-Cenóz, O. (1965) Some aspects of the structural organization of the intermediate retina of dipterans.Journal of Ultrastructure Research 13, 1–33.Google Scholar
  46. Trujillo-Cenóz, O. (1972) The structural organization of the compound eye in insects. InHandbook of Sensory Physiology Vol. 7/2 (edited byFuortes, M. G. F.), pp. 5–62. Berlin: Springer-Verlag.Google Scholar
  47. Trujillo-Cenóz, O. &Melamed, J. (1966) Electron microscope observations on the peripheral and intermediate retinas of dipterans. InThe Functional Organization of the Compound Eye (edited byBernhard, C. G.), pp. 339–61. Oxford: Pergamon Press.Google Scholar
  48. Wigglesworth, V. B. (1960) The nutrition of the central nervous system in the cockroachPeriplaneta americana. The role of perineurium and glial cells in the mobilization of reserves.Journal of Experimental Biology 37, 500–13.Google Scholar
  49. Zettler, F. &Järvilheto, M. (1971) Decrement-free conduction of graded potentials along the axon of a monopolar neuron.Zeitschrift für vergleichende Physiologie 75, 402–21.Google Scholar
  50. Zimmerman, R. P. (1978) Field potential analyses and the physiology of second-order neurons in the visual system of the fly.Journal of Comparative Physiology 126, 297–316.Google Scholar

Copyright information

© Chapman and Hall Ltd 1983

Authors and Affiliations

  • Richard L. Saint Marie
    • 1
  • Stanley D. Carlson
    • 1
  1. 1.Neurosciences Training Program and Department of EntomologyUniversity of Wisconsin, MadisonWisconsinUSA

Personalised recommendations