Journal of Neurocytology

, Volume 11, Issue 6, pp 967–983 | Cite as

The beta astrocyte: a newly recognized radiosensitive glial cell type in the cerebral cortex

  • H. Reyners
  • E. Gianfelici de Reyners
  • J. R. Maisin
Article

Summary

A highly radiosensitive glial cell type is described. The cell displays ultrastructural characteristics intermediate between the normal astrocyte and the light oligodendrocyte. It disappears from the cerebral cortex shortly after irradiation with doses ⩾ 20 Gy. One year after this treatment, the cell type had reappeared but its frequency was still significantly lower than in age-matched sham-treated controls. The numbers of oligodendrocytes and microglial cells were also reduced at this time. The new cell element, called here a beta astrocyte, is present in significant numbers in the normal rat brain and its role as a multipotential reserve glial cell is discussed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abercrombie, M. (1946) Estimation of nuclear population from microtome sections.Anatomical Record 94, 239–47.Google Scholar
  2. Fujita, S. &Kitamura, T. (1975) Origin of brain macrophages and the nature of the so-called microglia.Acta Neuropathologica Suppl.6, 291–6.Google Scholar
  3. Gerber, G. B., Deroo, J., Bessemans, B., Reinhold, H. S. &Verwey-Versteeg, A. A. C. (1976) Late effects in the central nervous system. A study of biochemical alterations after local exposure of the rat brain to 2krd.Strahlen therapie 151, 530–40.Google Scholar
  4. Grosch, D. S. &Hopwood, L. E. (1979)Biological Effects of Radiations, 2nd edn. New York: Academic Press.Google Scholar
  5. Hopewell, J. W. (1979) Late radiation damage to the central nervous system: a radiobiological interpretation.Neuropathology and Applied Neurobiology 5, 329–43.PubMedGoogle Scholar
  6. Kaplan, M. S. &Hinds, J. W. (1980) Gliogenesis of astrocytes and oligodendrocytes in the neocortical grey and white matter of the adult rat: electron microscopic analysis of light radioautographs.Journal of Comparative Neurology 193, 711–27.PubMedGoogle Scholar
  7. Keyeux, A. (1976) Late modifications of cephalic circulation in head X-irradiated rats.Radiation and Environmental Biophysics 13, 125–35.PubMedGoogle Scholar
  8. Ling, E. A. (1972) Presence of a fourth glial type considered to be a spongioblast (glia precursor) in the corpus callosum of rats of various ages.Anatomical Record 172, 356 (abstract).Google Scholar
  9. Ling, E. A. &Leblond, C. P. (1973) Investigation of glial cells in semithin sections. II. Variations with age in the numbers of the various glial cell types in rat cortex and corpus callosum.Journal of Comparative Neurology 149, 73–82.PubMedGoogle Scholar
  10. Lorente De No, R. (1922) La corteza cerebral del raton. Primera contribucion: la corteza acustica.Trabajos del Laboratorio de Investigation Biologica 20, 41–78.Google Scholar
  11. Ludwin, S. K. (1979) An autoradiographic study of cellular proliferation in remyelination of the central nervous system.American Journal of Pathology 95, 683–96.PubMedGoogle Scholar
  12. Mori, S. (1972) Light and electron microscopic features and frequencies of the glial cells present in the cerebral cortex of the rat brain.Archivum Histologicum Japonicum 34, 231–44.PubMedGoogle Scholar
  13. Mori, S. &Leblond, C. P. (1970) Electron microscopic identification of three classes of oligodendrocytes and a preliminary study of their proliferative activity in the corpus callosum of young rats.Journal of Comparative Neurology 139, 1–30.PubMedGoogle Scholar
  14. Palay, S. L., Billings-Gagliardi, S. &Chan-Palay, V. (1974) Neuronal perikarya with dispersed, single ribosomes in the visual cortex ofMacaca mulatta.Journal of Cell Biology 63, 1074–89.PubMedGoogle Scholar
  15. Palay, S. L. &Chan-Palay, V. (1974)Cerebellar Cortex. Cytology and Organisation. Berlin: Springer Verlag.Google Scholar
  16. Paterson, J. A., Privat, A., Ling, E. A. &Leblond, C. P. (1973) Investigation of glial cells in semithin sections. III. Transformation of subependymal cells into glial cells, as shown by radioautography after 3H-thymidine injection into the lateral ventricle of the brain of young rats.Journal of Comparative Neurology 149, 83–102.PubMedGoogle Scholar
  17. Peters, A., Palay, S. L. &Webster, H. De F. (1970)The Fine Structure of the Nervous System. The Cells and their Processes, pp. 105–31. New York: Harper and Row.Google Scholar
  18. Peters, A., Palay, S. L. &Webster, H. De F. (1976)The Fine Structure of the Nervous System. The Neurons and Supporting Cells, pp. 231–63. Philadelphia: Saunders.Google Scholar
  19. Privat, A., Valat, J. &Fulcrand, J. (1981) Proliferation of neuroglial cell lines in the degenerating optic nerve of young rats.Journal of Neuropathology and Experimental Neurology 40, 46–60.PubMedGoogle Scholar
  20. Reinhold, H. S. &Hopewell, J. W. (1980) Late changes in the architecture of blood vessels of the rat brain after irradiation.British Journal of Radiology 53, 693–6.PubMedGoogle Scholar
  21. Reyners, H., Gianfelicide Reyners, E. &Maisin, J. R. (1979) Effets tardifs de l'irradiation sur l'ultrastructure du cortex cerebral chez le rat.Comptes Rendus des Seances de la Societe de Biologie 173, 669–76.Google Scholar
  22. Reyners, H., Gianfelici De Reyners, E., Van Der Parren, J. &Maisin, J. R. (1977) Etude morphologique des citernes submembranaires des neurones et de leur relations spatiales avec les processus astrocytaires dans le cortex cerebral du rat.Biologie Cellulaire 30, 265–78.Google Scholar
  23. Robin, O. &Ponsot, G. (1978) Effects of undernutrition on glial maturation.Brain Research 149, 379–97.PubMedGoogle Scholar
  24. Skoff, R. P. (1980) Neuroglia: A reevaluation of their origin and development.Pathology Research and Practice 168, 279–300.Google Scholar
  25. Skoff, R. P. &Vaughn, J. E. (1971) An autoradiographic study of cellular proliferation in degenerating rat optic nerve.Journal of Comparative Neurology 141, 133–56.PubMedGoogle Scholar
  26. Stensaas, L. J. (1977) The ultrastructure of astrocytes, oligodendrocytes and microglia in the optic nerve of urodele amphibians (A. punctatum, T. pyrrhogaster, T. viridescens).Journal of Neurocytology 6, 269–86.PubMedGoogle Scholar
  27. Stephan-Dubois, F. (1952) Phenomenes de migration dans la regeneration de Tubifex et Lumbriculus.Comptes Rendus de la Societe de Biologie de Paris 146, 1127–31.Google Scholar
  28. Sturrock, R. R. (1976) Light microscopic identification of immature glial cells in semithin sections of the developing mouse corpus callosum.Journal of Anatomy 122, 521–37.PubMedGoogle Scholar
  29. Vaughan, D. W. &Peters, A. (1974) Neuroglial cells in the cerebral cortex of rats from young adulthood to old age: an electron microscope study.Journal of Neurocytology 3, 405–29.PubMedGoogle Scholar
  30. Vaughn, J. E. (1969) An electron microscopic analysis of gliogenesis in rat optic nerves.Zeitschrift für Zettforschung und mikroskopische Anatomie 94, 293–324.Google Scholar
  31. Vaughn, J. E. &Peters, A. (1971) The morphology and development of neuroglial cells. InCellular Aspects of Neural Growth and Differentiation (edited byPease, D.), pp. 103–40. Los Angeles: University of California Press.Google Scholar
  32. Vaughn, J. E. &Skoff, R. P. (1972) Neuroglia in experimentally altered central nervous system. InThe Structure and Function of Nervous Tissue Vol. V (edited byBourne, G. H.), pp. 39–72. New York: Academic press.Google Scholar
  33. Zeman, W. &Samorajski, T. (1971) Effects of irradiation on the nervous system. InPathology of Irradiation (edited byBerdjis, C. C.), pp. 213–77. Baltimore: Williams & Williams Co.Google Scholar

Copyright information

© Chapman and Hall Ltd 1982

Authors and Affiliations

  • H. Reyners
    • 1
  • E. Gianfelici de Reyners
    • 1
  • J. R. Maisin
    • 1
  1. 1.CEN/SCK Department of RadiobiologyCentre d'Etude de l'Energie NucleaireMolBelgium

Personalised recommendations