Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Characterization of pallidonigral neurons in the rat by a combination of Golgi impregnation and retrograde transport of horseradish peroxidase: their monosynaptic input from the neostriatum

  • 30 Accesses

  • 28 Citations


After injection of horseradish peroxidase, or its conjugate with wheatgerm agglutinin, into the substantia nigra of rats, retrogradely labelled cells were found in the globus pallidus. Forty-six of these neurons were also impregnated by the Golgi procedure and then gold-toned: their somata ranged from 15 to 30 μm in diameter and these pallidonigral neurons had from two to five primary dendrites that were long and smooth, that branched infrequently and that bore occasional spines on their distal regions. Most of the neurons studied came from the lateral part of the globus pallidus. At the ultrastructural level, the identified pallidonigral neurons were found to have deeply infolded nuclei and an abundant cytoplasm; their perikarya were richly innervated by two distinct types of bouton, both of which formed symmetrical synaptic contacts. The dendrites of pallidonigral neurons were ensheathed in boutons, the majority forming symmetrical synaptic contacts. After placement of electrolytic lesions in the rostro-dorsal neostriatum, degenerating boutons were found in symmetrical synaptic contact with the cell bodies and dendrites of six identified pallidonigral neurons.

It is concluded that pallidonigral neurons belong to the Golgi category of large pallidal neurons with smooth dendrites and that they receive monosynaptic input from the neostriatum. Thus, in addition to the direct striatonigral pathway, the neostriatum can influence the substantia nigra by a monosynaptic relay through the globus pallidus, which might allow other pallidal afferents to influence the transfer of information from neostriatum to substantia nigra.

This is a preview of subscription content, log in to check access.


  1. Arregui, A., Iversen, L. L., Spokes, E. G. S. &Emson, P. C. (1979) Alterations in post-mortem brain angiotensin converting enzyme activity and some neuropeptides in Huntington's disease.Advances in Neurology 23, 517–25.

  2. Bishop, G. A., Chang, H. T. &Kitai, S. T. (1982) Morphological and physiological properties of neostriatal neurons: an intracellular horseradish peroxidase study in the rat.Neuroscience 7, 179–91.

  3. Brownstein, M. J., Mroz, E. A., Tappaz, M. L. &Leeman, S. E. (1977) On the origin of substance P and glutamic acid decarboxylase (GAD) in the substantia nigra.Brain Research 135, 315–23.

  4. Buck, S. H., Burks, T. F., Brown, M. R. &Yamamura, H. I. (1981) Reduction in basal ganglia and substantia nigra substance P levels in Huntington's disease.Brain Research 209, 464–9.

  5. Bunney, B. S. &Aghajanian, G. K. (1976) The precise localization of nigral afferents in the rat as determined by a retrograde tracing technique.Brain Research 117, 423–35.

  6. Carpenter, M. B. (1981) Anatomy of the corpus striatum and brain stem integrating systems. InHandbook of Physiology, Section 1,The Nervous System, Vol. 2, Part II (edited byBrooks, V. B.), pp. 947–95. Bethesda, Maryland: American Physiological Society.

  7. Carpenter, M. B., Batton, R. R., Carleton, S. C. &Keller, J. T. (1981) Inter-connections and organization of pallidal and subthalamic nucleus neurons in the monkey.Journal of Comparative Neurology 197, 579–603.

  8. Carter, D. A. &Fibiger, H. C. (1978) The projections of the entopeduncular nucleus and globus pallidus in rat as demonstrated by autoradiography and horseradish peroxidase histochemistry.Journal of Comparative Neurology 177, 113–21.

  9. Chang, H. T., Wilson, C. J. &Kitai, S. T. (1981) Single neostriatal efferent axons in the globus pallidus: a light and electron microscopic study.Science 213, 915–18.

  10. Cuello, A. C. &Kanazawa, I. (1978) The distribution of substance P-immunoreactive fibres in the rat central nervous system.Journal of Comparative Neurology 178, 129–56.

  11. Cuello, A. C. &Paxinos, G. (1978) Evidence for a long Leu-enkephalin striatopallidal pathway in rat brain.Nature 271, 178–80.

  12. Del Fiacco, M., Paxinos, G. &Cuello, A. C. (1982) Neostriatal enkephalin-immunoreactive neurons project to the globus pallidus.Brain Research 231, 1–17.

  13. De Long, M. R. (1971) Activity of pallidal neurons during movement.Journal of Neurophysiology 34, 414–27.

  14. De Long, M. R. &Georgopoulos, A. P. (1981) Motor functions of the basal ganglia. InHandbook of Physiology, Section 1,The Nervous System, Vol. 2, Part II (edited byBrooks, V. B.), pp. 1017–61. Bethesda, Maryland: American Physiological Society.

  15. De Vito, J. L., Anderson, M. E. &Walsh, K. E. (1980) A horseradish peroxidase study of afferent connections of the globus pallidus in Macaca mulatta.Experimental Brain Research 38, 65–73.

  16. Di Chiara, G., Morelli, M., Porceddu, M. L., Mulas, M. &Del Fiacco, M. (1980) Effect of kainic acid-induced lesions of corpus caudatus and globus pallidus on glutamate decarboxylase of rat substantia nigra.Brain Research 189, 193–208.

  17. Di Figlia, M., Aronin, N. &Martin, J. B. (1982a) Light and electron microscopic localization of immunoreactive Leu-enkephalin in the monkey basal ganglia.Journal of Neuroscience 2, 303–20.

  18. Di Figlia, M., Pasik, P. &Pasik, T. (1982b) A Golgi and ultrastructural study of the monkey globus pallidus.Journal of Comparative Neurology 212, 53–75.

  19. Dray, A. (1979) The striatum and substantia nigra: a commentary on their relationships.Neuroscience 4, 1407–39.

  20. Dray, A. (1980) The physiology and pharmacology of the mammalian basal ganglia.Progress in Neurobiology 14, 221–335.

  21. Edstrom, J. P. &Phillis, J. W. (1980) A cholinergic projection from the globus pallidus to cerebral cortex.Brain Research 189, 524–9.

  22. Emson, P. C., Arregui, A., Clement-Jones, V., Sanberg, B. E. B. &Rossor, M. (1980a) Regional distribution of methionine-enkephalin and substance P-like immunoreactivity in normal human brain and in Huntington's disease.Brain Research 199, 147–60.

  23. Emson, P. C., Rehfeld, J. F., Langevin, H. &Rossor, M. (1980b) Reduction in cholecystokinin-like immunoreactivity in the basal ganglia in Huntington's disease.Brain Research 198, 497–500.

  24. Fairén, A., Peters, A. &Saldanha, J. (1977) A new procedure for examining Golgi impregnated neurons by light and electron microscopy.Journal of Neurocytology 6, 311–37.

  25. Fairén, A., De Felipe, J. &Martinez-Ruiz, R. (1981) The Golgi-EM procedure: a tool to study neocortical interneurons. InGlial and Neuronal Cell Biology, pp. 291–301 (11th International Congress of Anatomy). New York: AR Liss.

  26. Falls, W. M. &Park, M. R. (1981) Light and EM analysis of rat globus pallidus neurons intracellularly recorded and labelled with HRP.Anatomical Record 199, 79A-80A.

  27. Féger, J. (1981) Les ganglions de la base: Aspects anatomiques et electrophysiologiques.Journal de Physiologie 77, 7–44.

  28. Fonnum, F., Gottesfeld, Z. &Grofova, I. (1978) Distribution of glutamate decarboxylase, choline acetyltransferase and aromatic amino acid decarboxylase in the basal ganglia of normal and operated rats. Evidence for striatopallidal, striatoentopeduncular and striatonigral GABAergic fibres.Brain Research 143, 125–38.

  29. Fonnum, F. &Walaas, I. (1979) Localization of neurotransmitter candidates in the neostriatum. InThe Neostriatum (edited byDivac, I. andOberg, R. G. E.), pp. 53–69. Oxford: Pergamon Press.

  30. Fox, C. A., Andrade, A. N., Lu Qui, I. J. &Rafols, J. A. (1974) The primate globus pallidus: a Golgi and electron microscopic study.Journal für Hirnforschung 15, 75–93.

  31. Fox, C. A., Hillman, D. E., Siegesmund, K. A. &Sether, L. A. (1966) The primate globus pallidus and its feline and avian homologues: a Golgi and electron microscopic study. InEvolution of the Forebrain (edited byHassler, R. andStephan, H.), pp. 237–48. Stuttgart: Thieme Verlag.

  32. Gerfen, C. R., Staines, W. A., Arbuthnott, G. W. &Fibiger, H. C. (1982) Crossed connections of the substantia nigra in the rat.Journal of Comparative Neurology 207, 283–303.

  33. Gonatas, N. K., Harper, C., Mizutani, T. &Gonatas, J. O. (1979) Superior sensitivity of conjugates of horesradish peroxidase with wheatgerm agglutinin for studies of retrograde axonal transport.Journal of Histochemistry and Cytochemistry 27, 728–34.

  34. Gonzalez-Vegas, J. A. &Pardey, B. (1979) A presynaptic action of dopamine on globus pallidus afferents to substantia nigra in the rat.Neuroscience Letters 14, 77–80.

  35. Graybiel, A. M. &Ragsdale, C. W. (1979) Fiber connections of the basal ganglia.Progress in Brain Research 51, 239–83.

  36. Graybiel, A. M., Ragsdale, C. W. &Edley, S. M. (1979) Compartments in the striatum of the cat observed by retrograde cell labelling.Experimental Brain Research 34, 189–95.

  37. Grofova, I. (1975) The identification of striatal and pallidal neurons projecting to the substantia nigra. An experimental study by means of retrograde axonal transport of horseradish peroxidase.Brain Research 91, 286–92.

  38. Grofova, I. &Rinvik, E. (1970) An experimental electron microscopic study on the striatonigral projection in the cat.Experimental Brain Research 11, 249–62.

  39. Haber, S. &Elde, R. (1981) Correlation between Met-enkephalin and substance P immunoreactivity in the primate globus pallidus.Neuroscience 6, 1291–7.

  40. Harnois, C. &Filion, M. (1980) Pallidal neurons branching to the thalamus and to the midbrain in the monkey.Brain Research 186, 222–5.

  41. Harnois, C. &Filion, M. (1982) Pallidofugal projections to thalamus and midbrain: a quantitative antidromic activation study in monkeys and cats.Experimental Brain Research 47, 277–85.

  42. Hattori, T., Fibiger, H. C. &McGeer, P. L. (1975) Demonstration of a pallido-nigral projection innervating dopaminergic neurons.Journal of Comparative Neurology 162, 487–504.

  43. Hattori, T., McGeer, P. L., Fibiger, H. C. &McGeer, E. G. (1973) On the source of GABA-containing terminals in the substantia nigra. Electron microscopic autoradiographic and biochemical studies.Brain Research 54, 103–14.

  44. Herkenham, M. (1979) The afferent and efferent connections of the ventromedial thalamic nucleus in the rat.Journal of Comparative Neurology 183, 487–510.

  45. Hong, J. S., Yang, H.-Y. &Costa, E. (1977) On the location of methionine enkephalin neurons in rat striatum.Neuropharmacology 16, 451–3.

  46. Iwahori, N. &Mizuno, N. (1981) A Golgi study on the globus pallidus of the mouse.Journal of Comparative Neurology 197, 29–43.

  47. Jackson, A. &Crossman, A. R. (1981) Basal ganglia and other afferent projections to the peribrachial region in the rat: a study using retrograde and anterograde transport of horseradish peroxidase.Neuroscience 6, 1537–49.

  48. Jackson, A. &Crossman, A. R. (1983) Nucleus tegmenti pedunculopontinus: efferent connections with special reference to the basal ganglia, studied in the rat by anterograde and retrograde transport of horseradish peroxidase.Neuroscience 10, 725–65.

  49. Jessel, T. M., Emson, P. C., Paxinos, G. &Cuello, A. C. (1978) Topographic projection of substance P and GABA pathways in the striato- and pallido-nigral system: a biochemical and immunohistochemical study.Brain Research 152, 487–98.

  50. Kanazawa, I., Emson, P. C. &Cuello, A. C. (1977) Evidence for the existence of substance P-containing fibres in striato-nigral and pallido-nigral pathways in rat brain.Brain Research 119, 447–53.

  51. Kanazawa, I., Marshall, G. R. &Kelly, J. S. (1976) Afferents to the rat substantia nigra studied with horseradish peroxidase, with special reference to fibres from the subthalamic nucleus.Brain Research 115, 485–91.

  52. Kemp, J. A. (1970) The termination of strio-pallidal and strio-nigral fibres.Brain Research 17, 125–8.

  53. Kemp, J. M. &Powell, T. P. S. (1971) The site of termination of afferent fibres in the caudate nucleus.Philosophical Transactions of the Royal Society of London, Series B 262, 413–27.

  54. König, J. F. R. &Klippel, R. A. (1963)The Rat Brain. A Stereotaxic Atlas of the Forebrain and Lower Parts of the Brain Stem. Baltimore: Williams & Wilkins.

  55. Künzle, H. (1975) Bilateral projections from precentral motor cortex to the putamen and other parts of the basal ganglia. An autoradiographic study inMacaca fascicularis.Brain Research 88, 195–209.

  56. Leichnetz, G. R. &Astruc, J. (1977) The course of some prefrontal corticofugals to the pallidum, substantia innominata and amygdaloid complex in monkeys.Experimental Neurology 54, 104–9.

  57. Ljungdahl, A., Hökfelt, T. &Nilsson, G. (1978) Distribution of substance P-like immunoreactivity in the central nervous system of the rat-1. Cell bodies and nerve terminals.Neuroscience 3, 861–943.

  58. Marsden, C. D. (1982) The mysterious motor function of the basal ganglia: the Robert Wartenberg lecture.Neurology 32, 514–39.

  59. McGeer, P. L., Fibiger, H. C., Maler, L., Hattori, T. &McGeer, E. G. (1974) Evidence for descending pallidonigral GABA containing neurons.Advances in Neurology 3, 153–63.

  60. Mori, S. (1966) Some observations on the fine structure of the corpus striatum of the rat brain.Zeitschrift für Zellforschung und mikroskopische Anatomie 70, 461–88.

  61. Nagy, J. I., Carter, D. A. &Fibiger, H. C. (1978) Anterior striatal projections to the globus pallidus, entopeduncular nucleus and substantia nigra in the rat: the GABA connection.Brain Research 158, 15–29.

  62. Nagy, J. I. &Fibiger, H. C. (1980) A striatal source of glutamic acid decarboxylase activity in the substantia nigra.Brain Research 187, 237–42.

  63. Napier, T. C., Pirch, J. H. &Strahlendorf, H. K. (1983) Naloxone antagonizes striatally-induced supression of globus pallidus unit activity.Neuroscience 9, 53–9.

  64. Nauta, H. J. W. (1979a) Projections of the pallidal complex: an autoradiographic study in the cat.Neuroscience 4, 1853–73.

  65. Nauta, H. J. W. (1979b) A proposed conceptual rearrangement of the basal ganglia and telencephalon.Neuroscience 4, 1875–81.

  66. Nauta, H. J. W. &Cuénod, M. (1982) Perikaryal cell labelling in the subthalamic nucleus following the injection of3H-γ-aminobutyric acid into the pallidal complex: an autoradiographic study in the cat.Neuroscience 7, 2725–34.

  67. Nauta, H. J. W., Pritz, M. B. &Laser, R. J. (1974) Afferents to the rat caudatoputamen studied with horseradish peroxidase. An evaluation of a retrograde neuroanatomical research method.Brain Research 67, 219–38.

  68. Nauta, H. J. W. &Mehler, W. R. (1966) Projections of the lentiform nucleus in the monkey.Brain Research 1, 3–42.

  69. Parent, A., Boucher, R. &O'Reilly-Fromentin, J. (1981) Acetylcholinesterase-containing neurons in cat pallidal complex: morphological characteristics and projection towards the neocortex.Brain Research 230, 356–61.

  70. Parent, A. &de Bellefeuille, L. (1982) Organization of efferent projections from the internal segment of globus pallidus in primate as revealed by fluorescence retrograde labelling method.Brain Research 245, 201–13.

  71. Park, M. R., Falls, W. M. &Kitai, S. T. (1982) An intracellular HRP study of the rat globus pallidus. Responses and light microscopic analysis.Journal of Comparative Neurology 211, 284–94.

  72. Pycock, C. J. (1980) Turning behaviour in animals.Neuroscience 5, 461–514.

  73. Reinoso-Suárez, F., Llamas, A. &Arendano, C. (1982) Pallido-cortical projections in the cat studied by means of the horseradish peroxidase retrograde transport technique.Neuroscience Letters 29, 225–31.

  74. Reynolds, E. S. (1963) The use of lead citrate at high pH as an electron opaque stain in electron microscopy.Journal of Cell Biology 17, 208–12.

  75. Ribak, C. E., Vaughn, J. E. &Roberts, E. (1979) The GABA neurons and their axon terminals in rat, corpus striatum as demonstrated by GAD immunocytochemistry.Journal of Comparative Neurology 187, 261–84.

  76. Rolls, E. T., Thorpe, S. J., Maddison, S., Roper-Hall, A., Puerto, A. &Perret, D. (1979) Activity of neurones in the neostriatum and related structures in the alert animal. InThe Neostriatum (edited byDivac, I. andÖberg, R. G. E.), pp. 163–82. Oxford: Pergamon Press.

  77. Romansky, K. V. &Usunoff, K. G. (1974) Is there a cortico-pallidal tract?Comptes Rendus des Séances de l'Academie des Sciences 27, 995–8.

  78. Schneider, J. S., Morse, J. R. &Lidsky, T. I. (1982) Somatosensory properties of globus pallidus neurons in awake cats.Experimental Brain Research 46, 311–14.

  79. Severin, C. M., Young, P. A. &Massopust, L. C. (1976) Pallidothalamic projections in the rat.Journal of Comparative Neurology 166, 491–502.

  80. Somogyi, P., Bolam, J. P. &Smith, A. D. (1981a) Monosynaptic cortical input and local axon collaterals of identified striatonigral neurons. A light and electron microscopic study using the Golgi-peroxidase transport-degeneration procedure.Journal of Comparative Neurology 195, 567–84.

  81. Somogyi, P., Bolam, J. P., Totterdell, S. &Smith, A. D. (1981b) Monosynaptic input from the nucleus accumbens-ventral striatum region to retrogradely labelled nigrostriatal neurones.Brain Research 217, 245–63.

  82. Somogyi, P., Freund, T. F., Halasz, N. &Kisvarday, Z. F. (1981c) Selectivity of neuronal [3H]GABA accumulation in the visual cortex as revealed by Golgi staining of the labelled neurons.Brain Research 225, 431–6.

  83. Somogyi, P., Hodgson, A. J. &Smith, A. D. (1979) An approach to tracing neuron networks in the cerebral cortex and basal ganglia. Combination of Golgi staining, retrograde transport of horseradish peroxidase and anterograde degeneration of synaptic boutons in the same material.Neuroscience 4, 1805–52.

  84. Somogyi, P., Priestley, J. V., Cuello, A. C., Smith, A. D. &Takagi, H. (1982) Synaptic connections of enkephalin-immunoreactive nerve terminals in the neostriatum: a correlated light and electron microscopic study.Journal of Neurocytology 11, 779–807.

  85. Spokes, E. G. S., Garrett, N. J., Rossor, M. N. &Iversen, L. L. (1980) Distribution of GABA in post-mortem brain tissue from control, psychotic and Huntingdon's chorea subjects.Journal of Neurological Sciences 48, 303–13.

  86. Staines, W. A., Atmadja, S. &Fibiger, H. C. (1981) Demonstration of a pallidostriatal pathway by retrograde transport of HRP-labelled lectin.Brain Research 206, 446–50.

  87. Staines, W. A., Nagy, J. I., Vincent, S. R. &Fibiger, H. C. (1980) Neurotransmitters contained in the efferents of the striatum.Brain Research 194, 391–402.

  88. Switzer, R. C., Hill, J. &Heimer, L. (1982) The globus pallidus and its rostroventral extension into the olfactory tubercle of the rat: a cyto and chemoarchitectural study.Neuroscience 7, 1891–904.

  89. Szabo, J. (1967) The efferent projections of the putamen in the monkey.Experimental Neurology 19, 463–76.

  90. Szabo, J. (1970) Projections from the body of the caudate nucleus in the rhesus monkey.Experimental Neurology 27, 1–15.

  91. Totterdell, S., Bolam, J. P. &Smith, A. D. (1982) Synaptic input to identified pallidonigral neurons in the rat.Neuroscience 7, S212.

  92. Van Der Kooy, D., Hattori, T., Shannak, K. &Hornykiewicz, O. (1981) The pallido-subthalamic projection in rat: anatomical and biochemical studies.Brain Research 204, 253–68.

  93. Voneida, T. J. (1960) An experimental study of the course and destination of fibers arising in the head of the caudate nucleus in the cat and monkey.Journal of Comparative Neurology 115, 75–87.

  94. Wilson, C. J. &Phelan, K. D. (1982) Dual topographic representation of neostriatum in the globus pallidus of rats.Brain Research 243, 354–9.

  95. Woolf, N. J. &Butcher, L. L. (1981) Cholinergic neurons in the caudate-putamen proper are intrinsically organized: a combined Evans Blue and acetylcholinesterase analysis.Brain Research Bulletin 7, 487–507.

  96. Yoshida, M., Rabin, A. &Anderson, M. (1972) Monosynaptic inhibition of pallidal neurons by axon collaterals of caudato-nigral fibers.Experimental Brain Research 15, 333–47.

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Totterdell, S., Bolam, J.P. & Smith, A.D. Characterization of pallidonigral neurons in the rat by a combination of Golgi impregnation and retrograde transport of horseradish peroxidase: their monosynaptic input from the neostriatum. J Neurocytol 13, 593–616 (1984). https://doi.org/10.1007/BF01148081

Download citation


  • Horseradish Peroxidase
  • Substantia Nigra
  • Lateral Part
  • Distinct Type
  • Distal Region