Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Integral inequalities for conjugate harmonic functions

This is a preview of subscription content, log in to check access.

Literature cited

  1. 1.

    M. Riesz, “Sur les fonctions conjuguées,” Math. Z.,27, 218–244 (1927).

  2. 2.

    G. H. Hardy and J. E. Littlewood, “Some properties of conjugate functions,” J. Reine Angew. Math.,167, 405–432 (1932).

  3. 3.

    E. Stein and G. Weiss, “On the theory of harmonic functions of several variables,” Acta Math.,103, Nos. 1–2, 25–62 (1960).

  4. 4.

    C. Fefferman and E. Stein, “HP spaces of several variables,” Acta Math.,129, Nos. 3–4, 137–193 (1972).

  5. 5.

    T. M. Fleet, “Inequalities for the p-th mean values of harmonic and subharmonic functions withp⩽1, “ Proc. London Math. Soc., Ser. 3,20, 249–275 (1970).

  6. 6.

    A. P. Calderon and A. Zygmund, “On higher gradients of harmonic functions,” Stud. Math.,24, No. 2, 211–226 (1964).

  7. 7.

    U. Kuran, “Classes of subharmonic functions inR n × (0, ∞), ” Proc. London Math. Soc., Ser. 3,16, 473–492 (1966).

  8. 8.

    A. A. Bonami, “Integral inequalities for conjugate harmonic functions of several variables,” Mat. Sb.,87, No. 2, 188–203 (1972).

  9. 9.

    J. Horvath, “Sub les fonctions conjuguées á plusieurs variables,” Proc. Koince Nederl. Acad. Wetensch., Ser. A,56, No. 1, 17–29 (1953).

Download references

Author information

Additional information

Translated from Matematicheskie Zametki, Vol. 31, No. 1, pp. 25–32, January, 1982.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ryabogin, A.K. Integral inequalities for conjugate harmonic functions. Mathematical Notes of the Academy of Sciences of the USSR 31, 14–18 (1982). https://doi.org/10.1007/BF01146261

Download citation

Keywords

  • Harmonic Function
  • Integral Inequality
  • Conjugate Harmonic Function