Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Polynomial transformations of finite commutative local rings of principal ideals

This is a preview of subscription content, log in to check access.

Literature cited

  1. 1.

    W. Nöbauer, “Funktionen auf kommutativen Ringen,” Math. Ann.,147, No. 2, 166–175 (1962).

  2. 2.

    A. J. Kempner, “Polynomials and their residue systems,” Trans. Am. Math. Soc.,22, 240–288 (1921).

  3. 3.

    L. Carlitz, “Functions and polynomials (mod pn),” Acta Arithm.,9, 66–78 (1964).

  4. 4.

    G. Keller, “Counting polynomial functions (mod pn),” Duke Math. J.,35, No. 4, 835–838 (1964).

  5. 5.

    D. Singmaster, “On polynomial functions (mod m),” J. Number Theory,6, No. 5, 345–352 (1974).

  6. 6.

    I. G. Rosenberg, “Polynomial functions over finite rings,” Glasnik Math.,10, 25–33 (1975).

  7. 7.

    N. Jacobson, Structure of Rings, Am. Math. Soc. (1964).

  8. 8.

    0. Zariski and P. Samuel, Commutative Algebra, Vol. II, Van Nostrand, Princeton (1960).

  9. 9.

    N. Jacobson, Theory of Rings, Am. Math. Soc. (1966).

  10. 10.

    L. Carlitz, “Invariative theory of equations in a finite field,” Trans. Am. Math. Soc.,75, No. 3, 405–427 (1953).

  11. 11.

    A. A. Nechaev, “Finite rings of principal ideals,” Mat. Sb.,91, No. 3, 350–366 (1973).

  12. 12.

    W. Nöbauer, “Zur Theorie der Polynomtransformationen und Permutationspolynome,” Math. Ann.,157, 332–342 (1964).

  13. 13.

    A. A. Nechaev, “Finite critical rings,” Vestn. Mosk. Gos. Univ., Ser. Mat. Mekh., No. 3, 125 (1977).

Download references

Additional information

Translated from Matematicheskie Zametki, Vol. 27, No. 6, pp. 885–897, June, 1980.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Nechaev, A.A. Polynomial transformations of finite commutative local rings of principal ideals. Mathematical Notes of the Academy of Sciences of the USSR 27, 425–432 (1980). https://doi.org/10.1007/BF01145430

Download citation

Keywords

  • Local Ring
  • Principal Ideal
  • Polynomial Transformation
  • Commutative Local Ring