Journal of Materials Science

, Volume 26, Issue 19, pp 5171–5183 | Cite as

Micromechanisms of kinking in rigid-rod polymer fibres

  • D. C. Martin
  • E. L. Thomas


The tensile strengths of fibres of the rigid-rod polymers poly(paraphenylene benzobisthiazole) (PBZT) and poly(paraphenylene benzobisoxazole) (PBZO) are excellent, and therefore are of particular interest for high-performance structural applications. However, these fibres are a factor of ten weaker in compression, with failure occurring by strain localization in welldefined kink bands. Here, we study the morphology of PBZT and PBZO kink bands in detail, in order to help elucidate the molecular mechanisms involved in this deformation process. We found that the typical dimensions of a kink in the direction of the fibre axis (∼ 30 nm) were smaller than the length of an average PBZT or PBZO molecule (100 nm). Also, the boundary between the kinked and unkinked regions was well-defined. Low-dose, high-resolution electron microscopy (HREM) of the kink interior revealed local, high-angle changes in chain orientation, indicative of covalent bond bending or breaking. The kink boundaries exhibit “sharp” or “smooth” features which seem to be related to the local tensile or compressive nature of the stress field. A model for kink nucleation and propagation in terms of partial dislocations is presented and discussed. A stress analysis using this model has been developed, and comparison with experimental data suggests that kinks tend to propagate towards regions of higher compressive stress. This observation is interpreted in terms of dislocation pinning (in areas of hydrostatic tension) and the nucleation of dislocation pairs (in areas of hydrostatic compression) due to the asymmetric nature of the intermolecular energy potential. Finally, practical methods for improving compressive strength based on these mechanistic insights are proposed.


Compressive Strength Partial Dislocation Polymer Fibre Kink Band Hydrostatic Compression 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. W. Adams, P. G. Lenhert, J. J. P. Stewart, H. E. Klei, R. K. Eby, H. Jiang andJ. Smith,Bull. Amer. Phys. Soc. 32 (1987) 780.Google Scholar
  2. 2.
    S. G. Weirschke, AFWAL-TR-88-4201 (1988).Google Scholar
  3. 3.
    W. W. Adams andR. K. Eby,Mater. Res. Soc. Bull. XII (8) (1987) 22.Google Scholar
  4. 4.
    H. Ledbetter, Dow Chemical Co., USA, personal communication to W. Wade Adams, WPAFB (1987).Google Scholar
  5. 5.
    D. C. Martin, PhD dissertation, University of Massachusetts at Amherst (1990).Google Scholar
  6. 6.
    E. Orowan,Nature 149 (1942) 643.Google Scholar
  7. 7.
    F. C. Frank andA. N. Stroh,Proc. Roy. Phys. Soc. B65 (1952), 811.Google Scholar
  8. 8.
    A. S. Argon, “Fracture of Composites”, in “Treatise on Materials Science and Technology”, Vol. 1 (Academic Press, New York, 1972) pp. 79–114.Google Scholar
  9. 9.
    D. A. Zaukelies,J. Appl. Phys. 33 (1962) 2797.Google Scholar
  10. 10.
    T. Seto andY. Tajima,Jpn. J. Appl. Phys. 5 (1966) 534.Google Scholar
  11. 11.
    R. E. Robertson,J. Polym. Sci. A-2 7 (1969) 1315.Google Scholar
  12. 12.
    K. Shigematsu, K. Imada andM. Takayanagi,J. Polym. Sci. Polym. Phys. Ed. 13 (1975) 73.Google Scholar
  13. 13.
    G. E. Attenburrow andD. C. Bassett,J. Mater. Sci. 14 (1979) 2679.Google Scholar
  14. 14.
    R. J. Young andR. H. Baughman,ibid. 13 (1978) 55.Google Scholar
  15. 15.
    J. Petermann andJ. M. Schultz,ibid. 14 (1979) 891.Google Scholar
  16. 16.
    R. J. Young, D. Bloor, D. N. Batchelder andC. L. Hubble,ibid. 13 (1978) 62.Google Scholar
  17. 17.
    R. J. Young, R. Dulniak, D. N. Batchelder andD. Bloor,J. Polym. Sci. Polym. Phys. Ed. 17 (1979) 1325.Google Scholar
  18. 18.
    I. M. Robinson, P. H. J. Yeung, C. Galiotis, R. J. Young andD. N. Batchelder,J. Mater. Sci. 21 (1986) 3440.Google Scholar
  19. 19.
    T. Takahashi, M. Miura andK. Sakuri,J. Appl. Polym. Sci. 28 (1983) 579.Google Scholar
  20. 20.
    S. J. DeTeresa, S. R. Allen, R. J. Farris andR. S. Porter,J. Mater. Sci. 19 (1984) 57.Google Scholar
  21. 21.
    S. J. DeTeresa, PhD dissertation, University of Massachusetts at Amherst (1986).Google Scholar
  22. 22.
    D. Tanner, A. K. Dhingra andJ. J. Pigliacampi,J. Metals 38 (1986) 21.Google Scholar
  23. 23.
    S. R. Allen, A. G. Filippov, R. J. Farris, E. L. Thomas, C. P. Wong, G. C. Berry andE. C. Chenevey,Macromol. 14 (1981) 1135.Google Scholar
  24. 24.
    Y. Cohen, andE. L. Thomas,ibid. 21 (1988) 433.Google Scholar
  25. 25.
    S. R. Allen, PhD dissertation, University of Massachusetts at Amherst (1983).Google Scholar
  26. 26.
    W. W. Adams, D. L. Vezie andS. J. Krause, AFWAL-TR-88-4082 (1988).Google Scholar
  27. 27.
    S. J. DeTeresa, R. S. Porter andR. J. Farris,J. Mater. Sci. 20 (1985) 1645.Google Scholar
  28. 28.
    Idem, ibid. 23 (1988) 1886.Google Scholar
  29. 29.
    S. R. Allen,Polymer 29 (1988) 1091.Google Scholar
  30. 30.
    Idem private communication (1989).Google Scholar
  31. 31.
    S. DeTeresa, private communication (1989).Google Scholar
  32. 32.
    D. C. Martin andE. L. Thomas, in “The Materials Science and Engineering of Rigid-Rod Polymers”, edited by W. Wade Adams, R. Eby and D. Mclemore, Materials Research Society Symposium Proceedings (Materials Research Society, Pittsburg, 1989) p. 134.Google Scholar
  33. 33.
    D. C. Martin andE. L. Thomas,Macromol. (1991) in press.Google Scholar
  34. 34.
    S. J. DeTeresa, R. J. Farris andR. S. Porter,Polym. Compos. 3 (1982) 57.Google Scholar
  35. 35.
    J. M. Schultz andJ. Petermann,Phil. Mag. A 40 (1979) 27.Google Scholar
  36. 36.
    K. V. Vladimirskii,Zh. Eksp. Teor. Fiz. 17 (1947) 530.Google Scholar
  37. 37.
    F. C. Frank andJ. H. Van Der Merwe,Proc. Roy. Soc. 198 (1949) 205.Google Scholar
  38. 38.
    G. B. Olson andM. Cohen, “Dislocation Theory of Martensitic Phase Transformations”, in “Dislocations in Solids, Vol, 7, edited by F. R. N. Nabarro (North-Holland, Amsterdam, 1986) Ch. 37.Google Scholar
  39. 39.
    D. Hull, “Introduction to Dislocations”, 2nd Edn (Pergamon, Oxford, 1975).Google Scholar
  40. 40.
    A. M. Kosevich andV. S. Boiko,Sov. Phys. Uspekhi 14 (1971) 286.Google Scholar
  41. 41.
    A. M. Kosevich, “Crystal Dislocations and the Theory of Elasticity”, in “Dislocations in Solids”, Vol. 1, edited by F. R. N. Nabarro (North-Holland, 1979) Ch. 1.Google Scholar
  42. 42.
    H. D. Keith andE. Passaglia,J. Res. NBS 68A (1964) 513.Google Scholar
  43. 43.
    J. P. Hirth andJ. Lothe, “Theory of Dislocations”, 2nd Edn (Wiley, New York, 1982).Google Scholar
  44. 44.
    J. W. Steeds andJ. R. Willis, Dislocations in Anisotropie Media”, in “Dislocations in Solids”, edited by F. R. N. Nabarro (North-Holland, Amsterdam, 1979) Ch. 2.Google Scholar
  45. 45.
    R. J. Farris, private communication (1989).Google Scholar
  46. 46.
    A. G. Evans andW. F. Adler,Acta Metall. 26 (1978) 725.Google Scholar
  47. 47.
    D. C. Martin andE. L. Thomas,Phil. Mag. A (1991) in press.Google Scholar
  48. 48.
    R. E. Reed-Hill, “Physical Metallurgy Principles”, 2nd Edn, Brooks/Cole Engineering Division, (Litton Educational, Monterey, CA, 1973).Google Scholar
  49. 49.
    A. S. Argon, “Dislocations in Non-crystalline Media?”, in “Dislocation Modelling of Physical Systems, Proceedings of the International Conference”, edited by M. F. Ashby, R. Bullogh, C. S. Hartley and J. P. Hirth, Gainesville, FL, 22–27 June 1980, (Pergamon Press, 1981) p. 393.Google Scholar
  50. 50.
    J. Gross,Sci. Amer. 204 (5) (1961) 120.Google Scholar

Copyright information

© Chapman & Hall 1991

Authors and Affiliations

  • D. C. Martin
    • 1
  • E. L. Thomas
    • 1
  1. 1.Polymer Science and EngineeringThe University of Massachusetts at AmherstAmherstUSA

Personalised recommendations