Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Micromechanisms of kinking in rigid-rod polymer fibres

  • 103 Accesses

  • 30 Citations

Abstract

The tensile strengths of fibres of the rigid-rod polymers poly(paraphenylene benzobisthiazole) (PBZT) and poly(paraphenylene benzobisoxazole) (PBZO) are excellent, and therefore are of particular interest for high-performance structural applications. However, these fibres are a factor of ten weaker in compression, with failure occurring by strain localization in welldefined kink bands. Here, we study the morphology of PBZT and PBZO kink bands in detail, in order to help elucidate the molecular mechanisms involved in this deformation process. We found that the typical dimensions of a kink in the direction of the fibre axis (∼ 30 nm) were smaller than the length of an average PBZT or PBZO molecule (100 nm). Also, the boundary between the kinked and unkinked regions was well-defined. Low-dose, high-resolution electron microscopy (HREM) of the kink interior revealed local, high-angle changes in chain orientation, indicative of covalent bond bending or breaking. The kink boundaries exhibit “sharp” or “smooth” features which seem to be related to the local tensile or compressive nature of the stress field. A model for kink nucleation and propagation in terms of partial dislocations is presented and discussed. A stress analysis using this model has been developed, and comparison with experimental data suggests that kinks tend to propagate towards regions of higher compressive stress. This observation is interpreted in terms of dislocation pinning (in areas of hydrostatic tension) and the nucleation of dislocation pairs (in areas of hydrostatic compression) due to the asymmetric nature of the intermolecular energy potential. Finally, practical methods for improving compressive strength based on these mechanistic insights are proposed.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    W. W. Adams, P. G. Lenhert, J. J. P. Stewart, H. E. Klei, R. K. Eby, H. Jiang andJ. Smith,Bull. Amer. Phys. Soc. 32 (1987) 780.

  2. 2.

    S. G. Weirschke, AFWAL-TR-88-4201 (1988).

  3. 3.

    W. W. Adams andR. K. Eby,Mater. Res. Soc. Bull. XII (8) (1987) 22.

  4. 4.

    H. Ledbetter, Dow Chemical Co., USA, personal communication to W. Wade Adams, WPAFB (1987).

  5. 5.

    D. C. Martin, PhD dissertation, University of Massachusetts at Amherst (1990).

  6. 6.

    E. Orowan,Nature 149 (1942) 643.

  7. 7.

    F. C. Frank andA. N. Stroh,Proc. Roy. Phys. Soc. B65 (1952), 811.

  8. 8.

    A. S. Argon, “Fracture of Composites”, in “Treatise on Materials Science and Technology”, Vol. 1 (Academic Press, New York, 1972) pp. 79–114.

  9. 9.

    D. A. Zaukelies,J. Appl. Phys. 33 (1962) 2797.

  10. 10.

    T. Seto andY. Tajima,Jpn. J. Appl. Phys. 5 (1966) 534.

  11. 11.

    R. E. Robertson,J. Polym. Sci. A-2 7 (1969) 1315.

  12. 12.

    K. Shigematsu, K. Imada andM. Takayanagi,J. Polym. Sci. Polym. Phys. Ed. 13 (1975) 73.

  13. 13.

    G. E. Attenburrow andD. C. Bassett,J. Mater. Sci. 14 (1979) 2679.

  14. 14.

    R. J. Young andR. H. Baughman,ibid. 13 (1978) 55.

  15. 15.

    J. Petermann andJ. M. Schultz,ibid. 14 (1979) 891.

  16. 16.

    R. J. Young, D. Bloor, D. N. Batchelder andC. L. Hubble,ibid. 13 (1978) 62.

  17. 17.

    R. J. Young, R. Dulniak, D. N. Batchelder andD. Bloor,J. Polym. Sci. Polym. Phys. Ed. 17 (1979) 1325.

  18. 18.

    I. M. Robinson, P. H. J. Yeung, C. Galiotis, R. J. Young andD. N. Batchelder,J. Mater. Sci. 21 (1986) 3440.

  19. 19.

    T. Takahashi, M. Miura andK. Sakuri,J. Appl. Polym. Sci. 28 (1983) 579.

  20. 20.

    S. J. DeTeresa, S. R. Allen, R. J. Farris andR. S. Porter,J. Mater. Sci. 19 (1984) 57.

  21. 21.

    S. J. DeTeresa, PhD dissertation, University of Massachusetts at Amherst (1986).

  22. 22.

    D. Tanner, A. K. Dhingra andJ. J. Pigliacampi,J. Metals 38 (1986) 21.

  23. 23.

    S. R. Allen, A. G. Filippov, R. J. Farris, E. L. Thomas, C. P. Wong, G. C. Berry andE. C. Chenevey,Macromol. 14 (1981) 1135.

  24. 24.

    Y. Cohen, andE. L. Thomas,ibid. 21 (1988) 433.

  25. 25.

    S. R. Allen, PhD dissertation, University of Massachusetts at Amherst (1983).

  26. 26.

    W. W. Adams, D. L. Vezie andS. J. Krause, AFWAL-TR-88-4082 (1988).

  27. 27.

    S. J. DeTeresa, R. S. Porter andR. J. Farris,J. Mater. Sci. 20 (1985) 1645.

  28. 28.

    Idem, ibid. 23 (1988) 1886.

  29. 29.

    S. R. Allen,Polymer 29 (1988) 1091.

  30. 30.

    Idem private communication (1989).

  31. 31.

    S. DeTeresa, private communication (1989).

  32. 32.

    D. C. Martin andE. L. Thomas, in “The Materials Science and Engineering of Rigid-Rod Polymers”, edited by W. Wade Adams, R. Eby and D. Mclemore, Materials Research Society Symposium Proceedings (Materials Research Society, Pittsburg, 1989) p. 134.

  33. 33.

    D. C. Martin andE. L. Thomas,Macromol. (1991) in press.

  34. 34.

    S. J. DeTeresa, R. J. Farris andR. S. Porter,Polym. Compos. 3 (1982) 57.

  35. 35.

    J. M. Schultz andJ. Petermann,Phil. Mag. A 40 (1979) 27.

  36. 36.

    K. V. Vladimirskii,Zh. Eksp. Teor. Fiz. 17 (1947) 530.

  37. 37.

    F. C. Frank andJ. H. Van Der Merwe,Proc. Roy. Soc. 198 (1949) 205.

  38. 38.

    G. B. Olson andM. Cohen, “Dislocation Theory of Martensitic Phase Transformations”, in “Dislocations in Solids, Vol, 7, edited by F. R. N. Nabarro (North-Holland, Amsterdam, 1986) Ch. 37.

  39. 39.

    D. Hull, “Introduction to Dislocations”, 2nd Edn (Pergamon, Oxford, 1975).

  40. 40.

    A. M. Kosevich andV. S. Boiko,Sov. Phys. Uspekhi 14 (1971) 286.

  41. 41.

    A. M. Kosevich, “Crystal Dislocations and the Theory of Elasticity”, in “Dislocations in Solids”, Vol. 1, edited by F. R. N. Nabarro (North-Holland, 1979) Ch. 1.

  42. 42.

    H. D. Keith andE. Passaglia,J. Res. NBS 68A (1964) 513.

  43. 43.

    J. P. Hirth andJ. Lothe, “Theory of Dislocations”, 2nd Edn (Wiley, New York, 1982).

  44. 44.

    J. W. Steeds andJ. R. Willis, Dislocations in Anisotropie Media”, in “Dislocations in Solids”, edited by F. R. N. Nabarro (North-Holland, Amsterdam, 1979) Ch. 2.

  45. 45.

    R. J. Farris, private communication (1989).

  46. 46.

    A. G. Evans andW. F. Adler,Acta Metall. 26 (1978) 725.

  47. 47.

    D. C. Martin andE. L. Thomas,Phil. Mag. A (1991) in press.

  48. 48.

    R. E. Reed-Hill, “Physical Metallurgy Principles”, 2nd Edn, Brooks/Cole Engineering Division, (Litton Educational, Monterey, CA, 1973).

  49. 49.

    A. S. Argon, “Dislocations in Non-crystalline Media?”, in “Dislocation Modelling of Physical Systems, Proceedings of the International Conference”, edited by M. F. Ashby, R. Bullogh, C. S. Hartley and J. P. Hirth, Gainesville, FL, 22–27 June 1980, (Pergamon Press, 1981) p. 393.

  50. 50.

    J. Gross,Sci. Amer. 204 (5) (1961) 120.

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Martin, D.C., Thomas, E.L. Micromechanisms of kinking in rigid-rod polymer fibres. J Mater Sci 26, 5171–5183 (1991). https://doi.org/10.1007/BF01143210

Download citation

Keywords

  • Compressive Strength
  • Partial Dislocation
  • Polymer Fibre
  • Kink Band
  • Hydrostatic Compression