Absolute convergence of multiple Fourier series

  • S. P. Konovalov


Fourier Fourier Series Absolute Convergence Multiple Fourier Series 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    A. Zygmund, Trigonometric Series, Vol. 1, Cambridge Univ. Press, New York (1959).Google Scholar
  2. 2.
    S. Minakshisundaram and O. Szasz, “On absolute convergence of multiple Fourier series,” Trans. Am. Math. Soc.,61, No. 1, 36–53 (1947).Google Scholar
  3. 3.
    S. Bochner, Review of“On absolute convergence of multiple Fourier series,” by Szasz and Minakshisundaram, Math. Rev.,8, No. 7, 376 (1947).Google Scholar
  4. 4.
    S. Wainger, “Special trigonometric series in k dimensions,” Am. Math. Soc. Mem.,59, (1965).Google Scholar
  5. 5.
    Sh. A. Alimov, V. A. Il'in, and E. M. Nikishin, “Problems of convergence of multiple trigonometric series and spectral resolutions. I,” Usp. Mat. Nauk,31, No. 6, 28–83 (1976).Google Scholar
  6. 6.
    R. Cooke, “A Cantor-Lebesgue theorem in two dimensions,” Proc. Am. Math. Soc.,30, No. 3, 547–550 (1971).Google Scholar
  7. 7.
    V. S. Panferov, “The Cantor-Lebesgue theorem for double trigonometric series,” Mat. Zametki,14, No. 5, 655–666 (1973).Google Scholar
  8. 8.
    B. I. Golubov, “On convergence of the Riesz spherical means of multiple Fourier series,” Mat. Sb.,96, No. 2, 189–211 (1975).Google Scholar
  9. 9.
    A. Walfisz, Gitterpunkte in Mehrdimensionalen Kugeln, PWN, Warsaw (1957).Google Scholar
  10. 10.
    A. A. Karatsuba, Foundations of the Analytic Theory of Numbers [in Russian], Nauka, Moscow (1975).Google Scholar
  11. 11.
    A. G. Postnikov, Introduction to Analytic Number Theory [in Russian], Nauka, Moscow (1971).Google Scholar

Copyright information

© Plenum Publishing Corporation 1979

Authors and Affiliations

  • S. P. Konovalov
    • 1
  1. 1.M. V. Lomonosov Moscow State UniversityUSSR

Personalised recommendations