Summation of orthogonal series by the methods (ϕ, λ)

  • O. A. Ziza


Orthogonal Series 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    G. F. Kangro, “Theory of summability of sequences and series,” in: Mathematical Analysis, Advances in Science and Technology [in Russian], Vol. 12, Moscow (1974), pp. 5–70.Google Scholar
  2. 2.
    G. H. Hardy, Divergent Series, Oxford Univ. Press (1949).Google Scholar
  3. 3.
    K. Zeller and W. Beekman, Theorie der Limitierungsverfahren, Springer, Berlin-New York (1970).Google Scholar
  4. 4.
    K. Ishiguro, “On the summability methods of Riemann's type,” Bull. Soc. Math. Belg.,19, No. 3, 289–314 (1967).Google Scholar
  5. 5.
    B. Kwee, “On the general methods of summability,” J. London Math. Soc.,2, No. 1, 23–31 (1970).Google Scholar
  6. 6.
    I. I. Zhogin, “(L, α)-summation,” Uch. Zap. Sverdl. Gos. Ped. Inst.,54, 60–82 (1967).Google Scholar
  7. 7.
    A. Jakimovski, “Some remarks on Tauberian theorems,” Q. J. Math.,9, No. 34, 114–131 (1958).Google Scholar
  8. 8.
    M. S. Rangachari, “On some generalizations of Riemann summability,” Math. Z.,88, No. 2, 166–183 (1965).Google Scholar
  9. 9.
    C. T. Rajagopal, “Note on some Tauberian theorems of O. Sźasz,” Pac. J. Math.,2, No. 3, 377–384 (1952).Google Scholar
  10. 10.
    F. Vikhmann, “On a method of summation of series,” Tr. Tallinsk. Politekh. Inst., No. 373, 27–25 (1975).Google Scholar
  11. 11.
    S. B. Stechkin, “Summation methods of S. N. Bernshtein and W. Rogosinski,” survey article in: G. Hardy, Divergent Series [Russian translation], IL, Moscow (1951).Google Scholar
  12. 12.
    V. G. Chelidze, “ϕ-Summability of series,” Soobshch. Akad. Nauk Gruz. SSR,71, No. 1, 45–48 (1973).Google Scholar
  13. 13.
    A. V. Efimov, “Generalization of a theorem of Kachzmarz,” Mat. Zametki,1, No. 4, 399–404 (1967).Google Scholar
  14. 14.
    D. E. Men'shov, “Summation of orthogonal series by linear methods,” Tr. Mosk. Mat. Obshch.,10, 351–418 (1961).Google Scholar
  15. 15.
    S. Kaczmarz and H. Steinhaus, Theory of Orthogonal Series [in German], Chelsea Publ.Google Scholar
  16. 16.
    A. Zygmund, “Sur la sommation des séries de fonctions orthogonales,” Bull. Acad. Polon. Sci. Cracovie, Sér. A,6, 293–308 (1927).Google Scholar
  17. 17.
    G. Alexits, Convergence Problems of Orthogonal Series, Pergamon (1962).Google Scholar
  18. 18.
    V. A. Bolgov, “Summation of orthogonal series by linear methods,” Mat. Zametki,4, No. 6, 697–705 (1968).Google Scholar
  19. 19.
    O. A. Ziza, “Summation of orthogonal series by Euler's methods,” Mat. Sb.,66, No. 3, 354–377 (1965).Google Scholar
  20. 20.
    J. Meder, “On the Norlund summability of orthogonal series,” Bull. Acad. Polon. Sci.,10, No. 5, 261–264 (1962).Google Scholar
  21. 21.
    P. M. Sakhnenko, “Linear methods of summation of orthogonal series in L2[0, 1],” Izv. Vyssh. Uchebn. Zaved., Mat., No. 5, 52–66 (1975).Google Scholar
  22. 22.
    V. P. Stepin, “On a method of summation of orthogonal series,” Uch. Zap. Tartusk. Gos. Inst., No. 281, 152–156 (1971).Google Scholar
  23. 23.
    O. A. Ziza, “Some remarks on the summation of orthogonal series by Voronoi's methods,” Tr. Mosk. Inst. Elektron. Mashinostr., No. 4, 79–89 (1968).Google Scholar
  24. 24.
    A. Jakimovskii and J. Tzimbalario, “Inclusion relations for general Riesz typical means,” Cand. Math. Bull., No. 1, 51–61 (1974).Google Scholar
  25. 25.
    V. P. Stepin, “Generalization of some Tauberian theorems for Abel's method to the method (L, α),” Uch. Zap. Sverdl. Gos. Ped. Inst.,78 77–80 (1969).Google Scholar

Copyright information

© Plenum Publishing Corporation 1979

Authors and Affiliations

  • O. A. Ziza
    • 1
  1. 1.Moscow Institute of Electronic Machine ConstructionUSSR

Personalised recommendations