Mathematische Zeitschrift

, Volume 124, Issue 1, pp 51–63 | Cite as

Groups with automorphisms inverting most elements

  • Hans Liebeck
  • Desmond MacHale
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hall, M.: The theory of groups. New York: MacMillan 1959.Google Scholar
  2. 2.
    Manning, W.A.: Groups in which a large number of operators may correspond to their inverses. Trans. Amer. Math. Soc.7, 233–240 (1906).Google Scholar
  3. 3.
    Miller, G.A.: Groups containing the largest possible number of operators of order two. Amer. Math. Monthly12, 149–151 (1905).Google Scholar
  4. 4.
    —: Groups of order 2m which contain a relatively large number of operators of order two. Amer. J. Math.42, 1–10 (1920).Google Scholar
  5. 5.
    —: Non-Abelian groups admitting more than half inverse correspondences. Proc. Nat. Acad. Sci.16, 168–172 (1930).Google Scholar
  6. 6.
    —: Groups which admit five-eights automorphisms. Proc. Nat. Acad. Sci.17, 39–43 (1931).Google Scholar
  7. 7.
    Wall, C.T.C.: On groups consisting mostly of involutions. Proc. Cambridge Philos. Soc.67, 251–262 (1970).Google Scholar

Copyright information

© Springer-Verlag 1972

Authors and Affiliations

  • Hans Liebeck
    • 1
  • Desmond MacHale
    • 1
  1. 1.Department of MathematicsUniversity of KeeleStaffsEngland

Personalised recommendations