Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Banach-Saks property of a Banach space

This is a preview of subscription content, log in to check access.

Literature cited

  1. 1.

    S. Banach and S. Saks, “Sur la convergence forte dans les champs LP,” Stud. Math.,2, 51–57 (1930).

  2. 2.

    A. Baernstein, “On reflexivity and summbability. II,” Stud. Math.,42, 91–94 (1972).

  3. 3.

    A. Pelczynsky and W. Szlenk, “An example of a nonshrinking basis,” Revue Roumanine Math., Pures Appl.,10, 961–965 (1965).

  4. 4.

    A. Brunel and L. Sucheston, “On B-convex Banach spaces,” Math. Syst. Theory,4, No. 7, 294–299 (1974).

  5. 5.

    V. D. Mil'man, “Geometric theory of Banach spaces, 1,” Usp. Mat. Nauk,24, No. 3, 113–174 (1970).

  6. 6.

    W. B. Johnson, “On quotients of Lp which are quotients of lp,” Compositio Math.,34, 69–89 (1977).

  7. 7.

    E. V. Tokarev, “On linear dimension of certain Banach sequence spaces,” Teor. Funktsii, Funkts, Anal. Prilozh., Kharkov,24, 156–161 (1975).

  8. 8.

    E. M. Semenov, “Embedding theorems for Banach spaces of measurable functions,” Dokl. Akad. Nauk SSSR,156, No. 6, 1292–1295 (1964).

  9. 9.

    W. Szlenk, “Sur les suites faiblement convergentes dans l'espace Lp” Stud. Math.,25, 337–341 (1965).

Download references

Author information

Additional information

Translated from Matematicheskie Zametki, Vol. 26, No. 6, pp. 823–834, December, 1979.

The author thanks M. I. Kadets for assistance and useful discussions.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Rakov, S.A. Banach-Saks property of a Banach space. Mathematical Notes of the Academy of Sciences of the USSR 26, 909–916 (1979).

Download citation