Advertisement

Fourier-Haar coefficients

  • I. Ya. Novikov
  • E. M. Semenov
Article
  • 32 Downloads

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    P. L. Ul'yanov, “Haar series with monotone coefficients,” Izv. Akad. Nauk SSSR, Ser. Mat.,28, No. 4, 925–980 (1964).Google Scholar
  2. 2.
    S. V. Bochkarev, “Coefficients of Haar series,” Mat. Sb.,80, No. 1, 97–116 (1969).Google Scholar
  3. 3.
    B. I. Golubov, “Fourier series of continuous functions expressed in terms of the Haar system,” Izv. Akad. Nauk SSSR, Ser. Mat.,28, No. 6, 1271–1296 (1964).Google Scholar
  4. 4.
    B. I. Golubov, Haar Series [in Russian], Progress in Science (Itogi Nauki), Mathematical Analysis, Moscow (1971).Google Scholar
  5. 5.
    J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces, Vol. II, Springer-Verlag, Berlin (1979).Google Scholar
  6. 6.
    S. G. Krein, Yu. I. Petunin, and E. M. Semenov, Interpolation of Linear Operators, Translation of Mathematical Monographs, Vol. 54, American Mathematical Society, Providence, Rhode Island (1982).Google Scholar
  7. 7.
    W. Feller, Introduction to Probability Theory and Its Applications, Wiley (1971).Google Scholar
  8. 8.
    A. Zygmund, Trigonometric Series, Cambridge Univ. Press (1960).Google Scholar
  9. 9.
    P. I. Lizorkin, “Interpolation of weighted Lp-spaces,” Dokl. Akad. Nauk SSSR,222, No. 1, 32–35 (1975).Google Scholar
  10. 10.
    V. A. Rodin and H. M. Semyonov, “Rademacher series in symmetric spaces,” Anal. Math.,1, No. 3, 207–222 (1975).Google Scholar

Copyright information

© Plenum Publishing Corporation 1985

Authors and Affiliations

  • I. Ya. Novikov
    • 1
  • E. M. Semenov
    • 1
  1. 1.Voronezh State UniversityUSSR

Personalised recommendations