Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Transport and utilization of ferrioxamine-E-bound iron inErwinia herbicola (Pantoea agglomerans)


We have analyzed ferrioxamine-E-mediated iron uptake and metabolization inErwinia herbicola K4 (Pantoea agglomerans) by means of in vivo Mössbauer spectroscopy and radioactive labeling techniques. A comparison of cell spectra with the spectrum of ferrioxamine clearly demonstrates that ferrioxamine E is not accumulated in the cell, indicating a fast metal transfer. Only two major components of iron metabolism can be detected, a ferric and a ferrous species. At 30 min after uptake, 86% of the internalized metal corresponded to a ferrous ion compound and 14% to a ferric iron species. Metal transfer apparently involves a reductive process. With progressing growth, the oxidized species of the two major proteins becomes dominant. The two iron metabolites closely resemble species previously isolated fromEscherichia coli. These components of iron metabolism differ from bacterio-ferritin, cytochromes and most iron-sulfur proteins. All other iron-containing cellular components are at least one order of magnitude lower in concentration. We suggest that the ferrous and ferric iron species correspond to two different oxidation states of a low-molecular mass protein.

This is a preview of subscription content, log in to check access.


  1. Berner I, Winkelmann G (1990) Ferrioxamine transport mutants and the identification of the ferrioxamine receptor protein (FoxA) inErwinia herbicola (Enterobacter agglomerans). Biol Metals 2:197–202

  2. Berner I, Konetschny-Rapp S, Jung G, Winkelmann G (1988) Characterization of ferrioxamine E as the principal siderophore ofErwinia herbicola (Enterobacter agglomerans). Biol Metals 1:51–56

  3. Fecker L, Braun V (1983) Cloning and expression of thefhu genes involved in iron(III)-hydroxamate uptake byEscherichia coli. J Bacteriol 156:1301–1314

  4. Gavini F, Mergaert J, Beji A, Mielcarek C, Izard D, Kertsers K, De Ley J (1989) Transfer ofEnterobacter agglomerans (Beijerinck 1988) Ewing and Fife 1972 to Pantoea gen. nov. asPantoea agglomerans comb. nov. and description of Pantoea dispersa sp. nov. Int J Syst Bacteriol 39:337–345

  5. Hantke K (1990) Dihydroxybenzoylserine — a siderophore forE. coli. FEMS Microbiol Lett 67:5–8

  6. Keller-Schierlein W, Prelog V (1961) Stoffwechselprodukte von Acetinomyceten. 30. Über das Ferrioxamin E; ein Beitrag zur Konstitution des Nocardamins. Helv Chim Acta 44:1981–1985

  7. Krone WJA, Steghuis F, Koningstein G, van Doom C, Roosendaal B, de Graaf FK, Oudega B (1985) Characterization of the pCo1V-K30-encoded cloacin/aerobactin outer membrane receptor protein ofEscherichia coli; isolation and purification of the protein and analysis of its nucleotide sequence and primary structure. Microbiol Lett 26:153–161

  8. Lundrigan MD, Kadner RJ (1986) Nucleotide sequence of the gene for the ferrienterochelin receptor FepA inEscherichia coli. J Biol Chem 261:10797–10801

  9. Matzanke BF, Ecker DJ, Yang T-S, Huynh BH, Müller G, Raymond KN (1986) Iron enterobactin uptake inEscherichia coli followed by Mössbauer spectroscopy. J Bacteriol 167:674–680

  10. Matzanke BF (1987) M6ssbauer spectroscopy of microbial iron uptake and metabolism. In: G. Winkelmann, D. van der Helm, J. B. Neilands (eds) Iron transport in microbes, plants and animals, Verlag Chemie Weinheim, pp 251–284

  11. Matzanke BF, Bill E, Müller GI, Trautwein AX, Winkelmann G (1987a) Metabolic utilization of57Fe-labeled coprogen in Neurospora crassa. An in vivo M6ssbauer study. Eur J Biochem 162:643–650

  12. Matzanke BF, Bill E, Trautwein AX, Winkelmann G (1987b) Role of siderophores in iron storage in spores ofN. crassa andA. ochraceus. J Bacteriol 169:5873–5876

  13. Matzanke BF, Bill E, Trautwein AX, Winkelmann G (1988) Ferricrocin functions as the main intracellular iron-storage compound in mycelia ofNeurospora crassa. Biol Metals 1:18–25

  14. Matzanke BF, Bill E, Müller GI, Trautwein AX, Winkelmann G (1989a) In vivo Mössbauer spectroscopy of iron uptake and ferrometabolism inEscherichia coli. Proceedings of the third Seeheim workshop on M6ssbauer spectroscopy. Hyperf Interact 47:311–327

  15. Matzanke BF, Müller-Matzanke G, Raymond KN (1989a) Siderophore-mediated iron transport. In: Loehr TM (ed) Iron carriers and iron proteins, VCH Publishers, New York, pp 1–121

  16. Matzanke BF, Müller G, Bill E, Trautwein AX (1989b) Iron metabolism ofE. coli studied by Mössbauer spectroscopy and biochemical methods. Eur J Biochem 183:371–379

  17. Matzanke BF, Bill E, Trautwein AX, Winkelmann G (1990) Siderophores as iron-storage compounds in the yeastsRhodotorula minuta andUstilago sphaerogena detected by in vivo Mössbauer spectroscopy. Hyperf Interact 58:2359–2364

  18. Meiwes J (1989) Dissertation thesis, University of Tübingen

  19. Miller JH (1972) Experiments in molecular genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor NY

  20. Raymond KN, Müller GI, Matzanke BF (1984) Complexation of iron by siderophores. A review of their solution and structural chemistry and biological function, Top Curr Chem 123:49–102

  21. Sauer M, Hantke K, Braun V (1990) Sequence of thefhuE outer membrane receptor gene ofEscherichia coli K-12 and properties of mutants. Mol Microbiol 4:427–437

  22. Staudenmaier J, Van hove B, Yraghi Z, Braun V (1989) Nucleotide sequences of thefecBCDE genes and locations of the proteins suggest a periplasmic-binding-protein-dependent transport mechanism for iron(III) dicitrate inEscherichia coli. J Bacteriol 171:2626–2633

  23. Wagegg W, Braun V (1981) Ferric citrate transport inEscherichia coli requires outer membrane receptor protein FecA. J Bacteriol 145:156–163

  24. Wong GB, Kappel MJ, Raymond KN, Matzanke B, Winkelmann G (1983) Coordination chemistry of microbial iron transport compounds. 24. Characterization of coprogen and ferricrocin, two ferric hydroxamate siderophores. J Am Chem Soc 105:810–815

Download references

Author information

Correspondence to Berthold F. Matzanke.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Matzanke, B.F., Berner, I., Bill, E. et al. Transport and utilization of ferrioxamine-E-bound iron inErwinia herbicola (Pantoea agglomerans). Biol Metals 4, 181–185 (1991). https://doi.org/10.1007/BF01141312

Download citation

Key words

  • Erwinia herbicola (Pantoea agglomerans)
  • Ferrioxamine E
  • In vivo M6ssbauer spectroscopy
  • Iron metabolism
  • Iron transport
  • Siderophores