International Journal of Thermophysics

, Volume 13, Issue 6, pp 1061–1084

Thermophysical properties data on molten semiconductors

  • S. Nakamura
  • T. Hibiya


Thermophysical properties of molten semiconductors are reviewed. Published data for viscosity, thermal conductivity, surface tension, and other properties are presented. Several measurement methods often used for molten semiconductors are described. Recommended values of thermophysical properties are tabulated for Si, Ge, GaAs, InP, InSb, GaSb, and other compounds. This review shows that further measurements of thermophysical properties of GaAs and InP in the molten state are required. It is also indicated that a very limited amount of data on emissivity is available. Space experiments relating to thermophysical property measurements are described briefly.

Key words

density GaAs GaSb Ge high temperature InP InSb molten state semiconductors Si surface tension thermal conductivity viscosity 





Specific heat


Kinematic viscosity


Dynamic viscosityμ=νρ


Thermal diffusivity


Thermal conductivityλ=κCpρ


Volumetric thermal expansion coefficient


Surface tension


Temperature coefficient of surface tension


Gravitational acceleration




Temperature difference


Characteristic dimension


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. F. Witt, H. C. Gatos, M. Lichtensteiger, M. C. Lavine, and C. J. Herman,J. Electrochem. Soc. 122:276 (1975).Google Scholar
  2. 2.
    R. Krishunamurti,J. Fluid Mech. 60:285 (1973).Google Scholar
  3. 3.
    F. Rosenberger and G. Müller,J. Crystal Growth 65:91 (1983).Google Scholar
  4. 4.
    K. Kakimoto, M. Eguchi, H. Watanabe, and T. Hibiya,J. Crystal Growth 88:365 (1988).Google Scholar
  5. 5.
    M. Katayama, M. Kaneko, T. Horitomi, Y. Nakagawa, and L. Auguste,Proc. XI Jpn. Symp. Thermophys. Prop, (1990), p. 219.Google Scholar
  6. 6.
    S. Nakamura, T. Hibiya, F. Yamamoto, and T. Yokota,Int. J. Thermophys. 12:783 (1991).Google Scholar
  7. 7.
    S. Nakamura and T. Hibiya,Proc. 8th Eur. Symp. Mater. Fluid Sci. Micrograv. (1992) (in press).Google Scholar
  8. 8.
    V. M. Glazov, S. N. Chizhevskaya, and N. N. Glagoleva,Liquid Semiconductors (Plenum Press, New York, 1969).Google Scholar
  9. 9.
    A. R. Regel, I. A. Smirnov, and E. V. Shadrichev,Phys. Stat. Sol. 5:13 (1971).Google Scholar
  10. 10.
    B. J. Keene,Surface Interface Anal. 10:367 (1987).Google Scholar
  11. 11.
    A. Nagashima,Int. J. Thermophys. 11:417 (1990).Google Scholar
  12. 12.
    J. M. Grouvel and J. Kestin,Appl. Sci. Res. 34:427 (1987).Google Scholar
  13. 13.
    K. Kakimoto and T. Hibiya,Appl. Phys. Lett. 50:1249 (1987).Google Scholar
  14. 14.
    K. Kakimoto and T. Hibiya,Appl. Phys. Lett. 52:1576 (1988).Google Scholar
  15. 15.
    S. Ozawa, M. Eguchi, T. Fujii, and T. Fukuda,Appl. Phys. Lett. 51:197 (1987).Google Scholar
  16. 16.
    K. Kakimoto, M. Eguchi, H. Watanabe, and T. Hibiya,J. Crystal Growth 94:412 (1989).Google Scholar
  17. 17.
    B. M. Turovsky and A. P. Lyubimov,Izv. VUZov, Chern. Metallurg. 1:24 (1960).Google Scholar
  18. 18.
    B. M. Turovsky and I. I. Ivanova,Zhur. Ziz. Khim. 45:176 (1971).Google Scholar
  19. 19.
    V. M. Glazov, K. Dovletov, A. Ya. Nashelśkii, and M. M. Mamedov,Neorg. Mater. 13:34 (1977).Google Scholar
  20. 20.
    K. Kakimoto and T. Hibiya,J. Appl. Phys. 66:4181 (1988).Google Scholar
  21. 21.
    L. Battezzati and A. L. Greer,Acta Metall. 37:1791 (1989).Google Scholar
  22. 22.
    J. C. Brice and P. A. C. Whiffin,Solid-State Electron. 7:183 (1964).Google Scholar
  23. 23.
    M. G. Milvidskii and V. V. Eremeev,Sov. Phys. Solid State 6:1549 (1965).Google Scholar
  24. 24.
    Yu. M. Shashkov and V. P. Grishin,Sov. Phys. Solid State 8:447 (1966).Google Scholar
  25. 25.
    R. K. Crouch, A. L. Fripp, W. J. Debnam, R. E. Taylor, and H. Groot, inMaterials Processing in the Reduced Gravity Environment of Space, G. E. Rindone, Ed. (North-Holland, Amsterdam, 1983), p. 657.Google Scholar
  26. 26.
    R. E. Taylor, L. R. Holland, and R. K. Crouch,High Temp.-High Pres..17:47 (1985).Google Scholar
  27. 27.
    L. R. Holland and R. E. Taylor,J. Vac. Sci. Technol. A1:1615 (1983).Google Scholar
  28. 28.
    S. Sen, W. H. Konkel, S. J. Tighe, L. G. Bland, S. R. Sharma, and R. E. Taylor,J. Cryst. Growth 86:111 (1988).Google Scholar
  29. 29.
    K. Yamamoto, T. Abe, and S. Takasu,Jpn J. Appl. Phys. 30:2423 (1991).Google Scholar
  30. 30.
    L. R. Holland, R. P. Harris, and R. Smith,Rev. Sci. Instrum. 54:993 (1983).Google Scholar
  31. 31.
    S. Nakamura, T. Hibiya, and F. Yamamoto,Int. J. Thermophys. 9:933 (1988).Google Scholar
  32. 32.
    S. Nakamura, T. Hibiya, and F. Yamamoto,J. Appl. Phys. 68:5125 (1990).Google Scholar
  33. 33.
    F. Yamamoto, S. Nakamura, T. Hibiya, T. Yokota, D. Grothe, H. Harms, and P. Kyr,Proc. CSME Mech. Eng. Forum (1990), p. 1.Google Scholar
  34. 34.
    V. I. Fedorov and V. I. Machuev,Teplofiz. Vysokikh Temp. 8:447 (1970).Google Scholar
  35. 35.
    Kh. I. Amirkhanov and Ya. B. Magomedov,Sov. Phys. Solid State 7:506 (1965).Google Scholar
  36. 36.
    Kh. I. Amirkhanov and Ya. B. Magomedov,Sov. Phys. Solid State 8:241 (1966).Google Scholar
  37. 37.
    V. M. Glazov, A. A. Aaivazov, and V. G. Pavlov,Sov. Phys. Semicond. 5:182 (1971).Google Scholar
  38. 38.
    L. P. Filippov, A. V. Arutyunov, I. N. Makarenko, I. P. Mardyking, L. I. Trukhanova, B. I. Khusainova, and R. P. Yurchak,Heat and Mass Transport (Nauki i Teknika, Minsk (1968), p. 7.Google Scholar
  39. 39.
    A. S. Jordan,J. Cryst. Growth 71:551 (1985).Google Scholar
  40. 40.
    W. D. Kingery and M. Humenik Jr.,J. Phys. Chem. 57:359 (1953).Google Scholar
  41. 41.
    R. Shetty, R. Balasubramanian, and W. R. Wilcox,J. Cryst. Growth 100:51 (1990).Google Scholar
  42. 42.
    P. H. Keck and W. V. Horn,Phys. Rev. 91:512 (1953).Google Scholar
  43. 43.
    S. C. Hardy,J. Cryst. Growth 69:456 (1984).Google Scholar
  44. 44.
    R. Shetty, R. Balasubramanian, and W. R. Wilcox,J. Cryst. Growth 100:58 (1990).Google Scholar
  45. 45.
    V. V. Karatev, M. G. Milvidskii, and N. Ya. Zakharova,Iz. Akad. Nauk SSSR Neorgan. Mater. 2:833 (1966).Google Scholar
  46. 46.
    R. Rupp and G. Müller,J. Cryst. Growth 113:131 (1991).Google Scholar
  47. 47.
    M. D. Amashukeli, V. V. Karataev, M. G. Kekua, M. G. Milvidskii, and D. V. Khantadze,Neorgan. Mater. 17:2126 (1981).Google Scholar
  48. 48.
    A. S. Popov and L. Demberel,Krist. Tech. 12:1167 (1977).Google Scholar
  49. 49.
    S. V. Lukin, V. I. Zhuchkov, N. A. Vatolin, and Y. S. Kozlov,J. Less Common Metals 67:407 (1979).Google Scholar
  50. 50.
    F. N. Tavadze, M. G. Kekua, D. V. Khantadze, T. G. Tsertsvade, inPoverkh. Yavleniya Rasplavakh N. N. Eremenko, (ed.) (Naukova Dumka, Kiev, 1968), p. 159.Google Scholar
  51. 51.
    V. N. Bobkovski, V. I. Kostikov, V. Y. Levin, and A. S. Tarabanov,Konstr. Mater. Osn. Grafita 5:138 (1970).Google Scholar
  52. 52.
    M. Brunet, J. C. Joud, N. Eustathopoulos, and P. Desre,J. Less Common Metals 51:69 (1977).Google Scholar
  53. 53.
    V. B. Lazarev,Theoret. Exp. Chem. 3:294 (1967).Google Scholar
  54. 54.
    L. D. Lucas,Mem. Sci. Rev. Metallurg. 61:1 (1964).Google Scholar
  55. 55.
    A. S. Jordan,J. Cryst. Growth 49:631 (1979).Google Scholar
  56. 56.
    V. M. Glazov, V. B. Koltsov, and I. R. Suleimanov,Sov. Phys. Semicond. 19:1322 (1985).Google Scholar
  57. 57.
    V. M. Glazov, V. B. Koltsiv, and V. A. Kurbatov,Sov. Phys. Semicond. 22:202 (1988).Google Scholar
  58. 58.
    V. M. Glazov, S. G. Kim, and K. B. Nurov,Sov. Phys. Semicond. 23:1136 (1989).Google Scholar
  59. 59.
    V. V. Baidov and M. B. Gitis,Sov. Phys. Semicond. 4:825 (1970).Google Scholar
  60. 60.
    V. M. Glazov, S. G. Kim, and T. Suleimanov,Sov. Phys. Semicond. 22:1231 (1988).Google Scholar
  61. 61.
    P. Sommelet and R. L. Orr,J. Chem. Eng. Data 11:64 (1966).Google Scholar
  62. 62.
    B. D. Lichter and P. Sommelet,Trans. Metallurg. Soc. AIME 245:99 (1969).Google Scholar
  63. 63.
    B. D. Lichter and P. Sommelet,Trans. Metallurg. Soc. AIME 245:1021 (1969).Google Scholar
  64. 64.
    Landolt-Bornstein Numerical Data & Functional Relationship in Science and Technology, New Series, Group 3 Crystal and Solid State Physics, Vol. 17 (1982), p. 16.Google Scholar
  65. 65.
    W. E. Langlois,J. Cryst. Growth 56:15 (1982).Google Scholar
  66. 66.
    K. Kakimoto, P. Nicodème, M. Lecomte, F. Dupret, and M. J. Crochet,J. Cryst. Growth 114:715 (1991).Google Scholar
  67. 67.
    D. R. Hamilton and R. G. Seidensticker,J. Appl. Phys. 34:1450 (1963).Google Scholar
  68. 68.
    Z. Q. Wang, D. Stroud, and A. J. Markworth,Phys. Rev. B 40:3129 (1989).Google Scholar
  69. 69.
    I. Nakatani, K. Masumoto, S. Takahashi, I. Nishida, T. Kiyoawa, and N. Koguchi,J. Jpn. Inst. Metals 54:1025 (1990).Google Scholar
  70. 70.
    K. Kinoshita and T. Yamada,J. Cryst. Growth 96:953 (1989).Google Scholar
  71. 71.
    Y. Malmejac and G. Frohberg,Fluid Sci. Mater. Sci. Space, H. U. Walter, ed. (Springer-Verlag, New York, 1987), p. 159.Google Scholar
  72. 72.
    B. Feuerbacher and D. M. Herrlach, 40th Congress IAF, IAF-89-429 (1989).Google Scholar
  73. 73.
    A. Cröll, G. Müller, W. Sebert, and R. Nitsche,Mater. Res. Bull. 24:995 (1989).Google Scholar
  74. 74.
    S. Krishnan, R. H. Hauge, and J. L. Margrave,Proceedings, Second Noncontact Temperature Measurement Workshop (Pasadena, Calif., 1989), p. 110.Google Scholar
  75. 75.
    L. N. Hjellming and J. S. Walker,J. Cryst. Growth 87:18 (1988).Google Scholar
  76. 76.
    Z. Q. Wang and D. Stroud,Phys. Rev. B 38:1384 (1988).Google Scholar
  77. 77.
    Z. Q. Wang and D. Stroud,Phys. Rev. B 42:5353 (1990).Google Scholar

Copyright information

© Plenum Publishing Corporation 1992

Authors and Affiliations

  • S. Nakamura
    • 1
  • T. Hibiya
    • 1
  1. 1.Fundamental Research LaboratoriesNEC CorporationIbarakiJapan

Personalised recommendations