Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Fracture of random short-fiber SMC composite under shear loading

  • 102 Accesses

  • 5 Citations

Abstract

The fracture behavior of a random short-fiber SMC composite subjected to pure-shear (mode-II) loading is investigated. In the experimental phase of the study, a unique pure-shear fracture test is devised to evaluate the shear-fracture toughness of the composite. In the theoretical part of the study, a mechanics analysis based on fracture mechanics concepts and conservation laws of elasticity is used to determine the critical mode-II stress intensification and the associated strain energy release rate at shear failure. The in-plane shear-mode fracture toughnessK IIQ is found to be much lower than the opening-mode fracture toughnessK IQ of the composite. The fundamental mechanics and mechanisms of the shear fracture in theSMC material are discussed.

Résumé

on étudie le comportement à la rupture d'un composite SMC à fibres courtes réparties au hasard soumis une sollicitation de cisaillement pur (mode II). Au cours de la phase expérimentale de l'étude, on a mis au point un essai original de rupture en cisaillement pur pour évaluer la ténacité à la rupture par cisaillement du composite. Dans la partie théorique, on utilise une analyse mécanique basée sur les concepts de mécanique de rupture et sur les lois de conservation de l'élasticité, pour déterminer l'intensité critique de contraintes de mode II et le taux correspondant de relaxation de l'énergie de déformation lors de la rupture par cisaillement.

On trouve que la ténacité à la rupture par cisaillement dans le plan, KIIQ, est beaucoup plus faible que la ténacité à la rupture par ouverture, KIQ. On discute les aspects fondamentaux de mécanique et de mécanisme de rupture par cisaillement dans un matériau composite SMC.

This is a preview of subscription content, log in to check access.

References

  1. [1]

    R.B. Jutte,Structural SMC Material, Process, and Performance, Paper No. 780355, Society of Automotive Engineers, Detroit, MI (1978).

  2. [2]

    R.A. Heimbuch and B.A. Sanders, inComposite Materials in the Automobile Industry, ed. S.V. Kulkarni, C.H. Zweben and R.B. Pipes, American Society of Mechanical Engineers, New York (1978) 111–139.

  3. [3]

    D.A. Riegner and J.C. Hsu, inProceedings of the SAE Fatigue Conference, SAE/P-82/109, Society of Automotive Engineers, Detroit, MI (1982) 237–247.

  4. [4]

    F.J. McGarry, E.H. Rowe and C.K. Riew,Polymer Engineering and Science 18 (1978) 78–86.

  5. [5]

    D.L. Denton,The Mechanical Properties of an SMC-R50 Composite, Owens-Corning Fiberglas Corporation, Granville, OH (1979).

  6. [6]

    C.T. Sun and R.L. Sierakowski,SAMPE Quarterly 11 (1980) 15–21.

  7. [7]

    R.M. Alexander, R.A. Schapery, K.L. Jerina and B.A. Sanders, inShort Fiber Reinforced Composite Materials, ASTM STP 772, ed. B.A. Sanders, American Society for Testing and Materials (1982) 208–224.

  8. [8]

    S.S. Wang and E.S.-M. Chim,Journal of Composite Materials 114–134.

  9. [9]

    S.S. Wang, E.S.-M. Chim and N.M. Zahlan,Journal of Composite Materials 17 (1983) 250–266.

  10. [10]

    S.S. Wang, E.S.-M. Chim, T.P. Yu and D.P. Goetz,Journal of Composite Materials 17 (1983) 299–315.

  11. [11]

    N. Iosipescu,Journal of Materials 2, American Society for Testing and Materials (1967) 537–566.

  12. [12]

    C.T. Herakovich and H.W. Bergner, Jr.,Composites 11 (1980) 149–154.

  13. [13]

    D.E. Walrath and D.F. Adams,Experimental Mechanics 23 (1983) 105–110.

  14. [14]

    J.K. Knowles and E. Sternberg,Archive of Rational Mechanics and Analysis 44 (1972) 187–211.

  15. [15]

    F.H.K. Chen and R.T. Shield,Journal of Applied Mathematics and Physics (ZAMP) 28 (1977) 1–22.

  16. [16]

    J.F. Yau, S.S. Wang and H.T. Corten,Journal of Applied Mechanics 47 (1980) 335–341.

  17. [17]

    J.R. Rice,Journal of Applied Mechanics 35 (1968) 368–379.

  18. [18]

    P.C. Paris and G.C. Sih, inFracture Toughness Testing and Its Applications, ASTM STP 381, American Society for Testing and Materials (1965) 30–83.

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wang, S.S., Goetz, D.P. & Corten, H.T. Fracture of random short-fiber SMC composite under shear loading. Int J Fract 26, 215–227 (1984). https://doi.org/10.1007/BF01140629

Download citation

Keywords

  • Energy Release Rate
  • Shear Fracture
  • Shear Failure
  • Shear Loading
  • Fracture Test