Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Method of cyclic descent in the problem of best approximation

  • 50 Accesses

  • 3 Citations

This is a preview of subscription content, log in to check access.

Literature cited

  1. 1.

    M. M. Day, Normed Linear Spaces, Springer-Verlag (1973).

  2. 2.

    A. L. Garkavi, “On the uniqueness of the solution of the ℒ -problem of moments,” Izv. Akad. Nauk SSSR, Ser. Mat.,28, No. 3, 553–570 (1964).

  3. 3.

    D. A. d'Esopo, “A convex programming procedure,” Naval Res. Lab. Q.,6, No. 1, 33–42 (1959).

  4. 4.

    D. Mans, “Über die Konvergenz von Einzelschrittverfahren zur Minimisierung konvexer Funktionen,” Manuscr. Math.,6, No. l, 33–51 (1972).

  5. 5.

    J. M. Ortega and W. C. Rheinboldt, Iterative Solution of Nonlinear Equations in Several Variables, Academic Press (1970).

  6. 6.

    U. I. Zangvill, Nonlinear Programming, [in Russian], Sovet-skoe Radio, Moscow (1973).

  7. 7.

    J. Warga, “Minimizing certain convex functions,” J. Soc. Ind. Appl. Math.,11, 588–593 (1963).

  8. 8.

    S. Schechter, “Iteration methods for nonlinear problems,” Trans. Am. Math. Soc.,104, 179–189 (1962).

  9. 9.

    V. G. Karmanov, Mathematical Programming [in Russian], Nauka, Moscow (1975).

  10. 10.

    B. T. Polyak, “Methods of minimization of functions of many variables,” Ekonomika Mat. Metody,3, No. 6, 881–901 (1967).

  11. 11.

    Yu. I. Lyubin and G. D. Maistrovskii, “General theory of relaxation processes for convex functionals,” Usp. Mat. Nauk,25, No. 1, 57–109 (1970).

  12. 12.

    V. K. Saul'ev and I. I. Samoilova, “Approximation methods of unconditional optimization of functions of many variables,” Itogi Nauki Tekh., Mat. Anal.,11, 91–126 (1973).

  13. 13.

    E. G. Gol'dshtein and D. V. Yudin, “Methods of calculation and synthesis of impulse automatic systems,” Avtom. Telemekh.,24, No. 12, 1643–1659 (1963).

  14. 14.

    A. L. Brown, “Best n-dimensional approximation to sets of functions,” Proc. London Math. Soc.,14, 577–594 (1964).

  15. 15.

    J. Blatter, P. D. Morris, and D. E. Wulbert, “Continuity of the set-valued metric projections,” Math. Ann.,178, 12–24 (1968).

Download references

Author information

Additional information

Translated from Maternaticheskie Zametki, Vol. 27, No. 4, pp. 549–558, April, 1980.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Garkavi, A.L. Method of cyclic descent in the problem of best approximation. Mathematical Notes of the Academy of Sciences of the USSR 27, 270–274 (1980). https://doi.org/10.1007/BF01140527

Download citation