Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Principles of uniform boundedness

This is a preview of subscription content, log in to check access.

Literature cited

  1. 1.

    S. Banach and H. Steinhaus, “Sur le principe de la condensation de singularities,” Fund. Math.,9, 50–61 (1927).

  2. 2.

    J. Danes, “On the Banach-Steinhaus theorem,” Bollettino della Unione Matematica Italiana,13-A, No. 5, 282–286 (1976).

  3. 3.

    S. B. Stechkin, “Boundedness of nonlinear functionals,” Usp. Mat. Nauk,17, No. 1, 215–222 (1962).

  4. 4.

    P. Halmos, Measure Theory, Springer-Verlag (1974).

  5. 5.

    K. Yosida, Functional Analysis, Springer-Verlag (1974).

  6. 6.

    P. M. FitzPatric, “Surjectivity results for nonlinear mappings from a Banach space to its dual,” Math. Ann.,204, 177–188 (1973).

Download references

Author information

Additional information

Translated from Matematicheskie Zametki, Vol. 35, No. 2, pp. 287–297, February, 1984.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Zabreiko, P.P., Smirnov, E.I. Principles of uniform boundedness. Mathematical Notes of the Academy of Sciences of the USSR 35, 151–156 (1984). https://doi.org/10.1007/BF01139869

Download citation

Keywords

  • Uniform Boundedness