Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Fatigue resistance of impact-modified thermoplastic copolyesters

  • 70 Accesses

  • 2 Citations

Abstract

The effect of impact-modifier concentration and particle size on the fatigue resistance of an amorphous thermoplastic copolyester of dimethyl terephthalate with ethylene glycol and 1,4-cyclohexanedimethanol (KODAR®* PETG) was determined. Fatigue crack propagation (FCP) rate at a given value of stress intensity factor range, ΔK, decreased by a factor of four with the addition of an impact modifier, if the inherent viscosity of the PETG remained constant. The FCP rate did not vary with modifier concentration or particle size. However, the value of ΔK at instability did increase with increasing modifier content and particle size appeared to alter the FCP mechanism. in fatigue tests on unnotched specimens, neat PETG was more fatigue resistant than the impact-modified blends, suggesting that the modifier particles reduced the number of cycles required to initiate a crack.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    C. B. Bucknall, “Toughened Plastics” (Applied Science, London, 1977).

  2. 2.

    D. R. Paul andS. Newman, “Polymer Blends”, Vols 1 and 2 (Academic, New York, 1978).

  3. 3.

    S. Wu,Polymer 26 (1985) 1855.

  4. 4.

    Idem, J. Appl. Polym. Sci. 35 (1988) 549.

  5. 5.

    E. J. Moskala,ibid. 49 (1993) 53.

  6. 6.

    R. W. Hertzberg andJ. A. Manson, “Fatigue of Engineering Plastics” (Academic, London, 1980).

  7. 7.

    M. D. Skibo, J. A. Manson, R. W. Hertzberg andE. A. Collins, in “Durability of Macromolecular Materials”, edited by R. K. Eby, ACS Symposium Series No. 95 (ACS, Washington, DC, 1979) p. 311.

  8. 8.

    J. A. Manson andR. W. Hertzberg,J. Polym. Sci. Polym. Phys. Ed. 11 (1973) 2483.

  9. 9.

    ASTM Standard E647, “Standard Test Method for Measurement of Fatigue Crack Growth Rates”, Annual Book of ASTM Standards, Vol. 3.01 (American Society for Testing and Materials, Philadelphia, PA, 1992) p. 654.

  10. 10.

    P. C Paris andF. Erdogan,J. Bas. Eng. Trans. ASME Ser. D 85 (1963) 528.

  11. 11.

    ASTM Standard D256-92, “Standard Test Methods for Impact Resistance of Plastics and Electrical Insulating Materials”, Annual Book of ASTM Standards, Vol. 8.01 (American Society for Testing and Materials, Philadelphia, PA, 1993) p. 58.

  12. 12.

    ASTM Standard D638-91, “Standard Test Method for Tensile Properties of Plastics”, Annual Book of ASTM Standards, Vol. 8.01 (American Society for Testing and Materials, Philadelphia, PA, 1993) p. 161.

  13. 13.

    ASTM Standard D671-90, “Standard Test Method for Flexural Fatigue of Plastics by Constant-Amplitude-ofForce”, Annual Book of ASTM Standards, Vol. 8.01 (American Society for Testing and Materials, Philadelphia, PA, 1993) p. 194.

  14. 14.

    D. S. Dugdale,J. Mech. Phys. Solids 8 (1960) 100.

  15. 15.

    M. Ishikawa, I. Narisawa andH. Ogawa,J. Polym. Sci. Polym. Phys. Ed. 15 (1977) 1791.

  16. 16.

    D. Dompas andG. Groeninckx,Polymer 35 (1994) 4743.

  17. 17.

    J. A. Manson, R. W. Hertzberg, G. M. Connelly andJ. Hwang, in “Multicomponent Polymer Materials”, edited by D. R. Paul and L. H. Sperling, Advances in Chemistry Series No. 211 (ACS, Washington, DC, 1986) p. 291.

  18. 18.

    D. Woan, M. Habibullah andJ. A. Sauer,Polymer 22 (1981) 699.

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Moskala, E.J. Fatigue resistance of impact-modified thermoplastic copolyesters. J Mater Sci 31, 507–511 (1996). https://doi.org/10.1007/BF01139171

Download citation

Keywords

  • Fatigue
  • Ethylene Glycol
  • Stress Intensity
  • Intensity Factor
  • Stress Intensity Factor