Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Deformation of oriented high density polyethylene shish-kebab films

Part 1 Decrystallization at room temperature

  • 250 Accesses

  • 59 Citations

Abstract

Decrystallization is defined as the mechanically induced reduction and reorganization of the crystalline phase. The decrystallization of oriented high density polyethylene (HDPE) was observed here by transmission electron microscopy (TEM). A special drawing technique was used to form thin films with an idealized, highly oriented, shish-kebab morphology. These oriented films were uniaxially elongated at room temperature along or perpendicular to the chain direction, and then viewed by TEM. The use of such a well defined initial morphology reduced the deformation of polyethylene as a whole to that of three structural elements: long shish crystals, chain folded kebabs, and the non-crystalline phase. The non-uniform deformation characteristic of spherulitic film, in which the elongation direction is parallel to lamellar normals in one region and perpendicular to them in another, was thus avoided. High strain transformed the shish-kebab morphology into filaments which were generally non-crystalline and of uniform diameter, with occasional crystalline remnants within them. Upon decrystalliz ation, internal “defects” were generated within crystallites, facilitating subsequent yielding. Stressed kebabs decrystallized and fed into the shish core. “Defect” generation also resulted in a reduction in crystal thickness along the chain direction, indicating that such a reduction can occur in the absence of thermally induced melting. Crystals underwent <001) crystal shear and chain slip, reducing crystal width, as well as martensitic transformation to the monoclinic crystalline form. No subsequent recrystallization was detected by darkfield studies. The influence of the initial shish-kebab morphology of undeformed films on the growth of crazelike structures was discussed.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    R. J. Samuels,Polym. Eng. Sci. 25 (1985) 864.

  2. 2.

    R. A. Duckett,Int. Met. Rev. 28 (1983) 158.

  3. 3.

    A. Peterlin,Polym. Eng. Sci. 19 (1979) 118.

  4. 4.

    G. Capaccio, T. A. Crompton, andI. M. Ward,J. Polym. Set. Phys. Sci. Edn 14 (1976) 1641.

  5. 5.

    P. B. Bowden andR. J. Young,J. Mater. Sci. 9 (1974) 2034.

  6. 6.

    I.M. Ward,Pol ym Eng. Sci. 24 (1984) 724.

  7. 7.

    J. M. Schultz,ibid. 24 (1984) 770.

  8. 8.

    P. Smith, P. J. Lemstra, J. P. L. Pijpers, andA. M. Kiel,Colloid Polym. Sci. 259 (1981) 1070.

  9. 9.

    M. Takayanagi, K. Imada, andT. Kajiyama,J. Polym. Sci. Polmi. Symp. 15 (1966) 263.

  10. 10.

    J. C. Halpin andJ. L. Kardos,J. Appl. Phys. 43 (1972) 2235.

  11. 11.

    A. G. Gibson, G. R. Davies, andI. M. Ward,Polymer 19 (1978) 683.

  12. 12.

    A. Peterlin,J. Mater. Sci. 6 (1971) 490.

  13. 13.

    T. Seto, T. Hara, andK. Tanaka,Jpn. J. Appl. Phys. 7 (1968) 31.

  14. 14.

    M. Bevis andE. B. Crellin,Polymer 12 (1971) 666.

  15. 15.

    G. Meinel andA. Peterlin,J. Polym. Sci. Part A2 9 (1971) 67.

  16. 16.

    H. H. Kausch andK. L. Devries,Int. J. Fracture 11 (1975) 727.

  17. 17.

    D. C. Prevorsek, P. J. Harget, R. K. Sharma, andJ. Reimscheussel,J. Macromolecular Sci. Phys. B8 (1973) 127.

  18. 18.

    A. Peterlin,J. Appl. Phys. 48 (1977) 4099.

  19. 19.

    Idem, Polym. Eng. Sci. 18 (1978) 488.

  20. 20.

    F. Decandia, V. Vittoria, andA. Peterlin,J. Polym. Sci. Phys. 23 (1985) 1217.

  21. 21.

    M. Miles, J. Petermann, andH. Gleiter,J. Macromolecular Sci. B12 (1976) 523.

  22. 22.

    R. Corneluissen andA. Peterlin,Makromolekulare Chimie 105 (1967) 193.

  23. 23.

    A. Peterlin andK. Sakaoku,J. Appl. Phys. 38 (1967) 4152.

  24. 24.

    A. Peterlin, “Advances in Polymer Science and Engineering” edited by K. D. Pae, D. R. Morrow and Y. Chen (Plenum, New York, 1972) p. 1.

  25. 25.

    J. M. Brady andE. L. Thomas,J. Mater. Sci. to be published.

  26. 26.

    Idem., Polymer. to be published.

  27. 27.

    J. Petermann andR. M. Gohil,J. Mater. Sci. 14 (1979) 2260.

  28. 28.

    J. M. Brady andE. L. Thomas,J. Polym. Sci. Phys. 26 (1988) 2385.

  29. 29.

    K. Friedrich, “Advances in Polymer Science, 52/53” edited by H. H. Kausch (Springer Verlag, New York, 1983) p. 225.

  30. 30.

    A. R. Postema, W. Hoogsteen, andA. J. Pennings,Polym. Commun. 28 (1987) 148.

  31. 31.

    B. Heise, H. G. Kilian, andW. Wulff,Prog. Colloid Polym. Sci. 67 (1980) 143.

  32. 32.

    H. Matsuda, R. Kashiwagi, M. Okabe,Polymer J. 20 (1988) 189.

  33. 33.

    T. Seto, T. Hara, andK. Tanaka,Jpn J. Appl. Phys. 7 (1968) 31.

  34. 34.

    W. W. Adams, D. Yang, andE. L. Thomas,J. Mater. Sci. 21 (1986) 2239.

  35. 35.

    E. M. Reck, H. Schenk andW. Wilke,Prog. Colloid Polym. Sci. 71 (1985) 154.

  36. 36.

    J. Petermann andH. Gleiter,J. Mater. Sci. 8 (1973) 673.

  37. 37.

    G. M. Swallowe, J. E. Field, andL. A. Horn,ibid. 21 (1986) 4089.

  38. 38.

    P. J. Phillips andR. J. Philpot,Polym. Commun. 27 (1986) 307.

  39. 39.

    P. R. Swan,J. Polym. Sci. 56 (1962) 403.

  40. 40.

    D. Krueger andG. S. Y. Yen,J. Macromolecular Sci. B6 (1972) 431.

  41. 41.

    P. F. Van Hutten, C. E. Koning, andA. J. Pennings,Colloid Polym. Sci. 262 (1984) 521 and references therein.

  42. 42.

    B. D. Lauterwasser andE. J. Kramer,Phil. Mag. A39 (1979) 469.

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Brady, J.M., Thomas, E.L. Deformation of oriented high density polyethylene shish-kebab films. J Mater Sci 24, 3311–3318 (1989). https://doi.org/10.1007/BF01139059

Download citation

Keywords

  • High Density Polyethylene
  • HDPE
  • Crystal Thickness
  • Drawing Technique
  • Chain Direction