Advertisement

Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Isometry group of a generalized Riemannian symmetric space

  • 29 Accesses

This is a preview of subscription content, log in to check access.

Literature cited

  1. 1.

    T. Nagano, “Transformation groups of compact symmetric spaces,” Trans. Am. Math. Soc.,118, No. 6, 428–453 (1965).

  2. 2.

    J. Nagasava, “On linear holonomy group of Riemannian symmetric spaces,” Proc. Jpn. Acad.,41, No. 4, 270–272 (1965).

  3. 3.

    T. Ochiai, “Transformation groups on Riemannian symmetric spaces,” J. Diff. Geom.,3, No. 2, 231–236 (1969).

  4. 4.

    O. Kowalski, “On the classification of the generalized symmetric Riemannian spaces of dimension n ≤ 5,” Rozpravy CSAV. Rada MPV. R. 85. Sec. 3, pp. 1–61.

  5. 5.

    O. Kowalski, Generalized Symmetric Spaces [Russian translation], Mir, Moscow (1984).

  6. 6.

    A. Gray, “Riemannian manifolds with geodesic symmetries of order 3,”J. Diff. Geom.,7, No. 3–4, 343–369 (1972).

  7. 7.

    A. L. Onishchik, “Inclusion relations between transitive transformation groups,” Trudy MMO,11, 199–242 (1962).

  8. 8.

    S. Kobayashi and K. Nomizu, Foundations of Differential Geometry [Russian translation], Vol. 2, Nauka, Moscow (1981).

  9. 9.

    S. Helgason, Differential Geometry and Symmetric Spaces [Russian translation], Mir, Moscow (1964).

  10. 10.

    B. Kostant, “On differential geometry and homogeneous spaces. II,” Proc. Nat. Acad. Sci. USA,42, No. 6, 354–357 (1956).

Download references

Author information

Additional information

Translated from Matematicheskie Zametki, Vol. 41, No. 2, pp. 248–256, February, 1987.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Tralle, A.E. Isometry group of a generalized Riemannian symmetric space. Mathematical Notes of the Academy of Sciences of the USSR 41, 142–147 (1987). https://doi.org/10.1007/BF01138336

Download citation

Keywords

  • Symmetric Space
  • Isometry Group
  • Riemannian Symmetric Space
  • Generalize Riemannian Symmetric Space