Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Effects of methylprednisolone on the energy metabolism of quiescent and conA-stimulated thymocytes of the rat

  • 8 Accesses

  • 4 Citations

Abstract

The short-term effects of high concentrations of Methylprednisolone (MP) on the energy metabolism of quiescent and Concanavalin A-stimulated rat thymocytes were investigated in vitro. Concanavalin A (ConA) stimulated the respiration rate of quiescent thymocytes by 35%. Addition of more than 0.15 mg MP/107 cells to ConA-stimulated cells reversed this respiratory stimulation; in addition, higher concentrations of MP caused a similar progressive decrease in the rate of respiration of both quiescent and ConA-stimulated cells. Similarly, the stimulation of respiration by ConA was greatly reduced in MP-treated cells. MP addition lowered cytoplasmic [Ca2+] and, at high concentrations, abolished the ability of ConA to increase [Ca2+]. Thus MP both reverses and prevents the immediate stimulation of thymocytes by ConA.

In quiescent thymocytes, MP strongly inhibited that part of the oxygen consumption used to drive the cycle of Na+ influx across the plasma membrane and Na+ efflux on the Na+K+-ATPase, but did not inhibit oxygen consumption used to drive protein synthesis. In ConA-stimulated thymocytes MP had the same effects and also strongly inhibited oxygen consumption dependent on the cycle of Ca2+ influx across the plasma membrane and Ca2+ efflux on the Ca2+-ATPase, but had little effect on oxygen consumption used to drive RNA and DNA synthesis.

These results show that MP prevents cation cycling in thymocytes (either by preventing cation influx or by inhibiting cation pumps) and prevents mitogenic stimulation of the cells. The high MP concentration required and the speed of onset of the effect (lless than 30s) provide strong evidence that these effects of MP are not mediated by glucocorticoid receptors and subsequent activation of gene expression. They may be caused by direct effects of MP on the properties of the plasma membrane. These effects are considered to be, at least partially, responsible for the beneficial results that currently have been obtained using MP megadoses in various clinical situations.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    LaPointe, M. C., and Baxter, J. D. (1989) In: Anti-inflammatory steroid action. Schleimer, P. R., (Claman, H. N. and Oronsky, A. L. eds.), Academic Press,Inc., San Diego. 4–23.

  2. 2.

    Martens, M. E., Peterson, P. L. and Lee, C. P. (1991)Biochim. Biophys. Acta 1058: 152–160.

  3. 3.

    Behrens, T. W., and Goodwin, J. S. (1988) In:The Pharmacology of Lymphocytes. (Bray, M. A. and Morley, J. (edit), Springer Verlag, Berlin. 425–439.

  4. 4.

    Akahoshi, T., Oppenheim, J. J., and Matsushima, K. (1988)J. Exp. Med. 167:924–936.

  5. 5.

    Barile, L., and Lavalle, C. (1992)J. Rheumatol. 19:370–372.

  6. 6.

    Salmon, J. E., Kapur, S., Meryhew, N. L., Runquist, O. A., and Kimberley, R. P. (1989)Arthr. Rheum. 32:717–727.

  7. 7.

    Kaklamanis, P., Vayopoulos, G., Stamatelos, G., Dadinas, G., and Tsokos, G. C. (1991)Ann. Rheum. Dis. 50:176–177.

  8. 8.

    Hansen, T. M., Kryger, P., Elling, H., Haar, D., Kreutzfeldt, M., Ingman-Neilsen, M. W., Olsson, A. T., Pedersen, C., Rahbek, A., Tvede, N., and Winge, J. (1990)Brit. Med. J. 301:268–270.

  9. 9.

    Job-Deslandre, C., and Menkes, C. J. (1991)Clin. Exp. Rheumatol. 9 Suppl. 6:15–18.

  10. 10.

    Bracken, M. B., Shepard, M. J., Collins, W. F. et al. (1990)N. Engl. J. Med. 322: 1405–1411.

  11. 11.

    Bracken, M. B., Shepard, M. J., Collins, W. F. et al. (1992)J. Neurosurg. 76: 23–31.

  12. 12.

    Kuhn, W., Waldis, M., and Schurch, B. (1991)Schweiz. Rundschau Med. (Praxis) 80: 1096–1108.

  13. 13.

    Spoor, T. C. (1986)J. Clin. Neuro. Ophthalmol. 6:137–143.

  14. 14.

    Özsoylu, S., Hicsönmez, G., and Duru, F. (1990)Lancet 336:1078–1079.

  15. 15.

    Akoglu, T., Paydas, S., Bayik, M., Lawrence, R., and Firatli, T. (1991)Lancet 337:56.

  16. 16.

    de Glas-Vos, J. W., Krediet, R. T., and Arisz, L. (1991)Neth. J. Med. 38:96–103.

  17. 17.

    Schneider, S. M., Pipher, A., Britton, H. L., Borok, Z., and Harcup, C. H. (1988)J. Asthma. 25:189–193.

  18. 18.

    Wallaert, B., Ramon, P., Fournier, E. C., Hatron, P. Y., Muir, J. F., Tonnel, A. B., and Voisin, C. (1986)Eur. J. Respir. Dis. 68:256–262.

  19. 19.

    Siems, W., Dubiel, W., Dumdey, R., Müller, M., and Rapoport, S. M. (1984)Eur. J. Biochem. 139:101–107.

  20. 20.

    Müller, M., Siems, W., Buttgereit, F., Dumdey, R., and Rapoport, S. M. (1986)Eur. J. Biochem. 161:701–705.

  21. 21.

    Lakin-Thomas, P. L., and Brand, M. D. (1987)Biochem. J. 246:173–177.

  22. 22.

    Lakin-Thomas, P. L., and Brand, M. D. (1988)Biochem. J. 256:167–173.

  23. 23.

    Nobes, C. D., Lakin-Thomas, P. L., and Brand, M. D. (1989)Biochim. Biophys. Acta 976:241–245.

  24. 24.

    Nobes, C. D., Hay, W. W., and Brand, M. D. (1990)J. Biol. Chem. 265:12910–12915.

  25. 25.

    Buttgereit, F., Müller, M., and Rapoport, S. M. (1991)Biochem. Int. 24:59–67.

  26. 26.

    Buttgereit, F., Müller, M., and Rapoport, S. M. (1990)Biomed. Bioch. Acta 49:3–10.

  27. 27.

    Buttgereit, F., Brand, M. D., and Müller, M. (1992)Biosc. Rep. 12:109–114.

  28. 28.

    Hesketh, T. R., Smith, G. R., Moore, J. P., Taylor, M. V., and Metcalfe, J. C. (1983)J. Biol. Chem. 258:4876–4882.

  29. 29.

    Ardawi, M. S. M., and Newsholme, E. A., (1985)Essays Biochem. 21:1–44.

  30. 30.

    Sauers, L. M., Wierda, D., and Reasor, M. J. (1988)Immunopharm. Immunotox. 10:1–44.

  31. 31.

    Lewis, R. S., and Cahalan, M. D. (1990)Annu. Rev. Physiol. 52:415–430.

  32. 32.

    Deutsch, C. and Price, M. A. (1982)Biochim. Biophys. Acta 687:211–218.

  33. 33.

    Mitsumoto, Y., Sato, K., and Mohri, T. (1988)Biochim. Biophys. Acta 968:353–358.

  34. 34.

    Vandenberghe, P. A., and Ceuppens, J. L. (1990)J. Immunol. Meth. 127:197–205.

  35. 35.

    Benichiou, G., Kanellopoulos, J. M., Mitenne, F., Galanaud, P., and Leca, G. (1987)Scand. J. Immunol. 30:265–269.

  36. 36.

    Jy, W., Fregien, N., Bourguignon, G. J., and Bourguignon, L. Y. W. (1989)Biochim. Biophys. Acta 983:153–160.

  37. 37.

    Williams, D. B., Perera, M. A., Dorrington, K. J., and Klein, M. H. (1990)Immunology 69:468–475.

  38. 38.

    Gukovskaya, A. S., Pulido, H. A., Zinchenko, V. P., and Evtodienko, Y. V. (1989)FEBS Lett. 244:461–464.

  39. 39.

    Rabbani, F., Myers, A., Ramey, E., Ramwell, P., and Penhos, J. (1981)Prostaglandins 21:699–705.

  40. 40.

    Bangham, A. D., Standish, J. M., and Weissmann, G. (1965)J. Mol. Biol. 13:253–259.

  41. 41.

    Sessa, G., and Weissmann, G. (1968)J. Lipid Res. 9:310–318.

  42. 42.

    Lamche, H. R., Silberstein, P. T., Knabe, A. C., Thomas, D. D., Jacob, H. S., and Hammerschmidt, D. E. (1990)Inflammation 14:61–70.

  43. 43.

    Johansson, A., Hao, J., and Sjölund, B. (1990)Acta Anaesthesiol. Scand. 34:335–338.

  44. 44.

    Beccerica, E., Piergiacomi, G., Curatola, G., and Ferretti, G. (1989)Pharmacol. 38:16–22.

  45. 45.

    Hammerschmidt, D. E., Knabe, A. C., Silberstein, P. T., Lamche, H. R., and Coppo, P. A. (1988)Inflammation 12:277–284.

  46. 46.

    Brostoff, J., Scadding, G. K., Male, D. K., and Roitt, I. M. (1991)Clinical Immunology. Gower Medical Publishing, London p. 27.4.

  47. 47.

    Richieri, G. V., and Kleinfeld, A. M. (1989)J. Immunol. 143:2302.

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Buttgereit, F., Brand, M.D. & Müller, M. Effects of methylprednisolone on the energy metabolism of quiescent and conA-stimulated thymocytes of the rat. Biosci Rep 13, 41–52 (1993). https://doi.org/10.1007/BF01138177

Download citation

Key Words

  • methylprednisolone
  • thymocytes
  • ConA
  • energy metabolism
  • oxygen consumption
  • Ca2+ metabolism