Advertisement

Distribution of fractional parts of polynomials in several variables

  • G. I. Arkhipov
  • A. A. Karaduba
  • V. N. Chubarikov
Article

Keywords

Fractional Part 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    G. I. Arkhipov, A. A. Karatsuba. and V. N. Chubarikov, “An upper bound of the modulus of the multiple trigonometric sum,” Tr. Mat. Inst. Imeni V. A. Steklova,143, 3–21 (1977).Google Scholar
  2. 2.
    I. M. Vinogradov, The Method of Trigonometric Sums in Theory of Numbers [in Russian], Nauka, Moscow (1971).Google Scholar
  3. 3.
    I. M. Vinogradov, Special Variants of the Method of Trigonometric Sums [in Russian], Nauka, Moscow (1976).Google Scholar
  4. 4.
    H. Weyl, “über die Gleichverteilung der Zahlen mod. Eins,” Math. Ann.,77, 313–352 (1916).Google Scholar
  5. 5.
    G. H. Hardy and J. E. Littlewood, “Some problems of Diophantine approximation,” Proc. Intern. Congress Math., Cambridge,1, 223–229 (1912).Google Scholar
  6. 6.
    V. N. Chubarikov, “An asymptotic formula for the mean value of a multiple trigonometric sum,” Mat. Zametki,23, No. 6, 799–816 (1978).Google Scholar

Copyright information

© Plenum Publishing Corporation 1979

Authors and Affiliations

  • G. I. Arkhipov
    • 1
  • A. A. Karaduba
    • 1
  • V. N. Chubarikov
    • 1
  1. 1.V. A. Steklov Mathematics InstituteAcademy of Sciences of the USSRUSSR

Personalised recommendations