Lower bounds on the size of bounded depth circuits over a complete basis with logical addition

  • A. A. Razborov
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    N. Blum, “Boolean functions requiring 3n network size,” Theor. Comput. Sci.,28, 337–345 (1984).Google Scholar
  2. 2.
    M. Furst, J. B. Saxe, and M. Sipser, “Parity, circuits, and the polynomial time hierarchy,” Proc. 22nd Ann. IEEE Symp. on Foundations of Computer Sci. (1981), pp. 260–270.Google Scholar
  3. 3.
    M. Furst, J. B. Saxe, and M. Sipser, “Parity, circuits, and the polynomial time hierarchy,” Math. Syst. Theory,17, 13–27 (1984).Google Scholar
  4. 4.
    M. Ajtai, “Ϝ1 1 formulas on finite structures,” Ann. Pure Appl. Logic,24, 1–48 (1983).Google Scholar
  5. 5.
    L. G. Valiant, “Exponential lower bounds for restricted monotone circuits,” Proc. 15th Ann. ACM Symp. on Theory of Comp. (1983), pp. 110–187.Google Scholar
  6. 6.
    R. Boppana, “Threshold functions and bounded depth monotone circuits,” Proc. 16th Ann. ACM Symp. on Theory of Comp. (1984), pp. 475–479.Google Scholar
  7. 7.
    M. Klaw, W. Paul, N. Pippenger, and M. Yannakakis, “On monotone formulas with restricted depth,” Proc. 16th Ann. ACM Symp. on Theory of Comp. (1984), pp. 475–479.Google Scholar
  8. 8.
    A. Yao, “Separating the polynomial-time hierarchy by oracles,” Proc. 26th Ann. IEEE Symp. on Foundations of Computer Science (1985), pp. 1–10.Google Scholar
  9. 9.
    J. Hastad, “Almost-optimal lower bounds for small depth circuits,” Preprint (1985).Google Scholar
  10. 10.
    A. A. Razborov, “Lower bounds on monotone complexity of some Boolean functions,” Dokl. Akad. Nauk SSSR,281, No. 4, 789–801 (1985).Google Scholar
  11. 11.
    A. A. Razborov, “Lower bounds on monotone complexity of a logical permanent,” Mat. Zametki,37, No. 6, 887–900 (1985).Google Scholar
  12. 12.
    A. E. Andreev, “On a method of obtaining lower complexity bounds of individual monotone functions,” Dokl. Akad. Nauk SSSR,282, No. 5, 1033–1037 (1985).Google Scholar
  13. 13.
    N. Alon and R. B. Boppana, “The monotone circuit complexity of Boolean functions,” Preprint (1985).Google Scholar
  14. 14.
    D. Yu. Grigor'ev, “Lower bounds for algebraic complexity of computations,” Computational Complexity Theory, I [in Russian], Zapiski LOMI, Vol. 188, Nauka, Leningrad (1982).Google Scholar
  15. 15.
    A. A. Razborov, “Lower bounds on the size of bounded depth circuits over the basis { &, ∀, ⊕},” Usp. Math. Nauk,41, No.4, 219–220 (1986).Google Scholar
  16. 16.
    R. Smolensky, “Algebraic methods in the theory of lower bounds for Boolean circuit complexity,” Preprint, Univ. of California, Berkeley (1986).Google Scholar
  17. 17.
    M. Paterson, “Bounded depth circuits over {+, λ},” Preprint, Univ. of Warwick (1986).Google Scholar

Copyright information

© Plenum Publishing Corporation 1987

Authors and Affiliations

  • A. A. Razborov
    • 1
  1. 1.V. A. Steklov Mathematical InstituteAcademy of Sciences of the USSRUSSR

Personalised recommendations