Applied Physics B

, Volume 60, Issue 2–3, pp 145–153 | Cite as

Localization of atoms in light fields: Optical molasses, adiabatic compression and squeezing

  • S. Marksteiner
  • R. Walser
  • P. Marte
  • P. Zoller
Cold Atoms, Atom Traps


We present a theoretical study of the localization1 of atoms with an angular momentumJg=3 toJe=4 transition (e.g., chromium atoms) in quantized optical molasses created by two counterpropagating linearly polarized laser beams. We study the localization as a function of the potential depth, the angle between the polarizations and the interaction time with the molasses in the low-intensity limit, and discuss the possibility of adiabatic compression and squeezing of the atomic distribution.


32.80.Pj 42.50.Vk 81.15.-z 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. Timp, R. E. Behringer, D. M. Tennant, J. E. Cunningham, M. Prentiss, K. K. Berggren: Phys. Rev. Lett.69, 1636 (1992)Google Scholar
  2. 2.
    J.J. McClelland, R.E. Scholten, E.C. Palm: Science262, 877 (1993)Google Scholar
  3. 3.
    V. I. Balykin, V. S. Letokhov: Opt. Commun.64, 151 (1987)Google Scholar
  4. 4.
    O. Carnal, M. Sigel, T. Sleator, H. Takuma, J. Mlynek: Phys. Rev. Lett.67, 3231 (1991)Google Scholar
  5. 5.
    J.J. McClelland, M.R. Scheinfein: J. Opt. Soc. Am. B8, 1974 (1991)Google Scholar
  6. 6.
    G. M. Gallatin, P. L. Gould: J. Opt. Soc. Am. B8, 502 (1991)Google Scholar
  7. 7.
    I. Sh. Averbukh, V. M. Akulin, W. P. Schleich: Phys. Rev. Lett.72, 437 (1994)Google Scholar
  8. 8.
    Y. Castin, J. Dalibard: Europhys. Lett.14, 761 (1991)Google Scholar
  9. 9.
    P. Marte, R. Dum, R. Taieb, P.D. Lett, P. Zoller: Phys. Rev. Lett.71, 1335 (1993)Google Scholar
  10. 10.
    T. Bergemann: Phys. Rev. A48, R3425 (1993)Google Scholar
  11. 11.
    P. S. Jessen, C. Gerz, P. D. Lett, W. D. Phillips, S. L. Rolston, R. J. C. Spreeuw, C. I. Westbrook: Phys. Rev. A69, 49 (1992)Google Scholar
  12. 12.
    G. Grynberg, B. Lounis, P. Verkerk, J.-Y. Courtois, C. Salomon: Phys. Rev. Lett.70, 2249 (1993)Google Scholar
  13. 13.
    A. Hemmerich, T. W. Hänsch: Phys. Rev. Lett.70, 410 (1993)Google Scholar
  14. 14.
    Adiabatic cooling of atoms in optical molasses by a slow turn-off of the optical potential has been observed experimentally at NIST Gaithersburg; W. D. Phillips, S. Rolston: Private communication (1994)Google Scholar
  15. 15.
    J. Janitzky, Y. Y. Yushin: Opt. Commun.59, 151 (1986)Google Scholar
  16. 16.
    G. S. Agarwal, S. A. Kumar: Phys. Rev. Lett.26, 3665 (1991)Google Scholar
  17. 17.
    I. Averbhuk, B. Sherman, G. Kurizki: Phys. Rev. A (submitted)Google Scholar
  18. 18.
    This squeezing limit in a finite depth optical potential with perioda coincides with the diffraction limit [5] obtained for (coherent) focusing with an atomic lens of aperturea Google Scholar
  19. 19.
    P. Marte, R. Dum, R. Taieb, P. Zoller: Phys. Rev. A47, 1378 (1993)Google Scholar
  20. 20.
    R. Taieb, P. Marte, R. Dum, P. Zoller: Phys. Rev. A47, 4986 (1993)Google Scholar
  21. 21.
    Since it is well known [8] that, whenever the GOBE can be approximated by a rate equation γ0≪ωosc=[E n(q)−E n+1(q)]/ħ, the time scale for laser cooling scales with ϒ0−1. Within this approximation, the results of Figs. 4a,b depend only on the scaled time ϒ0 t Google Scholar
  22. 22.
    P. Storey, M. Collett, D. Walls: Phys. Rev. Lett.68, 472 (1992)Google Scholar
  23. 23.
    M. A. M. Marte, P. Zoller: Appl. Phys. B54, 477 (1992)Google Scholar
  24. 24.
    B.E.A Saleh, M.C. Teich:Fundamentals of Photonics (Wiley-Interscience, New York 1990)Google Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • S. Marksteiner
    • 1
    • 2
  • R. Walser
    • 1
    • 2
  • P. Marte
    • 1
    • 2
  • P. Zoller
    • 1
    • 2
  1. 1.Joint Institute for Laboratory AstrophysicsUniversity of ColoradoBoulderUSA
  2. 2.Institut für Theoretische PhysikUniversität InnsbruckInnsbruckAustria

Personalised recommendations