Erkenntnis

, Volume 43, Issue 3, pp 295–320 | Cite as

Definedness

  • Solomon Feferman

Abstract

Questions of definedness are ubiquitous in mathematics. Informally, these involve reasoning about expressions which may or may not have a value. This paper surveys work on logics in which such reasoning can be carried out directly, especially in computational contexts. It begins with a general logic of “partial terms”, continues with partial combinatory and lambda calculi, and concludes with an expressively rich theory of partial functions and polymorphic types, where termination of functional programs can be established in a natural way.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abadi, M., Cardelli, L., Curien, P.-L., and Levy, J.-J.: 1991, ‘Explicit Substitutions’,J. of Functional Programming 375–416.Google Scholar
  2. Barendregt, H. P.: 1977, ‘The Type-Free Lambda Calculus’, in Barwise 1977, 1091–1132.Google Scholar
  3. Barendregt, H. P.: 1984,The Lambda Calculus: Its Syntax and Semantics (2nd. edn.), North-Holland, Amsterdam.Google Scholar
  4. Barwise, J. (ed.): 1977,Handbook of Mathematical Logic, North-Holland, Amsterdam.Google Scholar
  5. Beeson, M.: 1981, ‘Formalizing Constructive Mathematics: Why and How?’, inConstructive Mathematics, Lecture Notes in Mathematics 873, 146–190.Google Scholar
  6. Beeson, M.: 1985,Foundations of Constructive Mathematics, Springer-Verlag, Berlin.Google Scholar
  7. Beeson, M.: 1986, ‘Proving Programs and Programming Proofs’, inLogic, Methodology and Philosophy of Science VII, North-Holland, Amsterdam, pp. 51–81.Google Scholar
  8. Church, A.: 1941,The Calculi of Lambda-Conversion, Princeton University Press, reprinted 1963 by University Microfilms Inc., Ann Arbor.Google Scholar
  9. Curien, P.-L.: 1991, ‘An Abstract Framework for Environment Machines’,Theoretical Computer Science 82, 389–402.Google Scholar
  10. Curry, H. B. and Feys, R.: 1958,Combinatory Logic, Vol. I, North-Holland, Amsterdam.Google Scholar
  11. Feferman, S.: 1975, ‘A Language and Axioms for Explicit Mathematics’, inAlgebra and Logic, Lecture Notes in Mathematics 450, 87–139.Google Scholar
  12. Feferman, S.: 1979, ‘Constructive Theories of Functions and Classes’, inLogic Colloquium '78, North-Holland, Amsterdam, 159–224.Google Scholar
  13. Feferman, S.: 1990, ‘Polymorphic Typed Lambda-Calculi in a Type-Free Axiomatic Framework’, inLogic and Computation, Contemporary Mathematics 106, 101–136.Google Scholar
  14. Feferman, S.: 1992, ‘Logics for Termination and Correctness of Functional Programs’, inLogic from Computer Science, MSRI Publications 21, Springer-Verlag, New York, 95–127.Google Scholar
  15. Feferman, S.: 1992a, ‘Logics for Termination and Correctness of Functional Programs, II. Logics of strength PRA’, inProof Theory, Cambridge Univ. Press, Cambridge.Google Scholar
  16. Feferman, S.: 1992b, ‘A New Approach to Abstract Data Types, I. Informal Development’,Mathematical Stuctures in Computer Science 2, 193–229.Google Scholar
  17. Feferman, S.: 1992c, ‘A New Approach to Abstract Data Types, II. Computability onADTs as Ordinary Computation’, inComputer Science Logic, Lecture Notes in Computer Science 626, 79–95.Google Scholar
  18. Feferman, S.: 1996, ‘Computation or Abstract Data Types. The Extensional Approach, with an Application to Streams’,Annals of Pure and Applied Logic (to appear).Google Scholar
  19. Fenstad, J. E.: 1980,General Recursion Theory. An Axiomatic Approach, Springer-Verlag, Berlin.Google Scholar
  20. Fourman, M. P.: 1977, ‘The Logic of Topoi’, in Barwise 1977, 1053–1090.Google Scholar
  21. Goodman, N.: 1972, ‘A Simplification of Combinatory Logic’,J. Symbolic Logic 37, 225–246.Google Scholar
  22. Hindley, J. R. and Seldin, J. P.: 1986,Introduction to Combinators and λ-Calculus, Cambridge University Press, Cambridge.Google Scholar
  23. Lambert, K. (ed.): 1991,Philosophical Applications of Free Logic, Oxford University Press, New York.Google Scholar
  24. Lambert, K. and van Fraassen, B.: 1967, ‘On Free Description Theory’,Zeitschr.f. Math. Logik und Grundlagen der Math. 13, 225–240.Google Scholar
  25. Mitchell, J. C.: 1990, ‘Type Systems for Programming Languages’, inHandbook of Theoretical Computer Science, Vol. B.Formal Models and Semantics, Elsevier, Amsterdam, pp. 365–458.Google Scholar
  26. Moggi, E.: 1986, ‘Categories of Partial Morphisms and theλ p-Calculus’, inCategory Theory and Computer Programming, Lecture Notes in Computer Science 240, 242–251.Google Scholar
  27. Moggi, E.: 1988,The Partial Lambda-Calculus, Ph. D. Thesis, University of Edinburgh.Google Scholar
  28. Moschovakis, Y. N.: 1969, ‘Abstract First-Order Computability I’,Trans. Amer. Math. Soc. 138, 427–464.Google Scholar
  29. Pljuškevičus, R. A.: 1968, ‘A Sequential Variant of Constructive Logic Calculi for Normal Formulas not Containing Structural Rules’, inThe Calculi of Symbolic Logic, I, Proc. of the Steklov Inst. of Mathematics 98, AMS Translations, 1971, pp. 175–229.Google Scholar
  30. Schwichtenberg, H.: 1977, ‘Proof Theory: Some Applications of Cut-Elimination’, in Barwise 1977, 867–895.Google Scholar
  31. Scott, D.: 1967, ‘Existence and Description in Formal Logic’, in Bertrand Russell:Philosopher of the Century, Little, Brown, and Co., Boston, pp. 181–200. (Reprinted in Lambert 1991, pp. 28–48].Google Scholar
  32. Scott, D.: 1972, ‘Continuous Lattices’, inToposes, Algebraic Geometry and Logic, Lecture Notes in Mathematics 274, 97–136.Google Scholar
  33. Scott, D.: 1979, ‘Identity and Existence in Formal Logic’, inApplications of Sheaves, Lecture Notes in Mathematics 753, 660–696.Google Scholar
  34. Stärk, R.: 1995, ‘Applicative Theories with Explicit Substitutions and Call-by-value Evaluation’ (unpublished notes).Google Scholar
  35. Strahm, T.: 1996, ‘Partial Applicative Theories and Explicit Substitutions’,J. Logic and Computation 6, no. 1.Google Scholar
  36. Strahm, T.: 1995, ‘Polynomial Time Operations in Explicit Mathematics’,J. Symbolic Logic (to appear).Google Scholar
  37. Troelstra, A. S. and van Dalen, D.: 1988,Constructivism in Mathematics. An Introduction, Vols. I and II, North-Holland, Amsterdam.Google Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • Solomon Feferman
    • 1
  1. 1.Department of MathematicsStanford UniversityStanfordUSA

Personalised recommendations