Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Encapsulation of transition metal species into zeolites and molecular sieves as redox catalysts: Part I-preparation and characterisation of nanosized TiO2, CdO and ZnO semiconductor particles anchored in NaY zeolite

Abstract

In this paper, we report the preparation and characterisation of nanometer-sized TiO2, CdO, and ZnO semiconductor particles trapped in zeolite NaY Preparation of these particles was carried out via the traditional ion exchange method and subsequent calcination procedure. It was found that the smaller cations, i.e., Cd2+ and Zn2+ could be readily introduced into the SI' and SII' sites located in the sodalite cages, through ion exchange; while this is not the case for the larger Ti species, i.e., Ti monomer [TiO]2+ or dimer [Ti2O3]2+ which were predominantly dispersed on the external surface of zeolite NaY The subsequent calcination procedure promoted these Ti species to migrate into the internal surface of the supercages. These semiconductor particles confined in NaY zeolite host exhibited a significant blue shift in the UV VIS absorption spectra, in contrast to the respective bulk semiconductor materials, due to the quantum size effect (QSE). The particle sizes calculated from the UV VIS optical absorption spectra using the effective mass approximation model are in good agreement with the atomic absorption data.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    M.R. Hoffmann, S.T. Martin, W. Choi, and D.W. Bahnemann, Chem. Rev.95, 69 (1995).

  2. 2.

    A.L. Linsebigler, G.Q. Lu, and J.T. Yates, Jr., Chem. Rev.95, 735 (1995).

  3. 3.

    A. Hagfeldt and M. Grätzel, Chem. Rev.95, 49 (1995).

  4. 4.

    G.Q. Lu, inIndoor Air-An Integrated Approach, edited by L. Morawska (Elesvier Science, London, 1995), pp. 387–391.

  5. 5.

    S. Sampath, H. Uchida, and H. Yoneyama, J. Carat.149, 189 (1994).

  6. 6.

    W.E. Wentworth and P.J. Chen, Solar Energy52, 253 (1994).

  7. 7.

    K.I. Suzuki, inPhotocatalytic Purification and Treatment of Water and Air, edited by D.F. Ollis and H. Al-Ekabi (Elsevier Science, London, 1993), p. 421.

  8. 8.

    C. Marllard-Dupuy, C. Guillard, and P. Pichat, New J. Chem.18, 941 (1994).

  9. 9.

    L.E. Brus, J. Chem. Phys.80, 4403 (1984).

  10. 10.

    L.E. Brus, J. Phys. Chem.90, 2555 (1986).

  11. 11.

    L. Zang, C.Y. Liu, and X.M. Ren, J. Chem. Soc., Faraday Trans.91, 917 (1995).

  12. 12.

    A.I. Ekimov, A.L. Efros, and A.A. Onushchenko, Solid State Commun.56, 921 (1985).

  13. 13.

    Y. Wang and W. Makler, Opt. Commun.61, 233 (1987).

  14. 14.

    H. Yoneyama, S. Haga, and S. Yamanaka, J. Phys. Chem.93, 4833 (1989).

  15. 15.

    Y. Wang and N. Herron, J. Phys. Chem.91, 257 (1987).

  16. 16.

    N. Herron, Y. Wang, M.M. Eddy, G.D. Stucky, D.E. Cox, K. Moller, and T. Bein, J. Am. Chem. Soc.111, 530 (1989).

  17. 17.

    X. Liu, K. Iu, and J.K. Thomas, Chem. Phys. Lett.195, 163 (1992).

  18. 18.

    J.S. Beck, J.C. Vartuli, W.J. Roth, M.E. Leonowicz, C.T. Kresge, K.D. Schmitt, C.T.-W. Chu, D.H. Olson, E.W. Sheppard, S.B. McCullen, J.B. Higgins, and J.L. Schlenker, J. Am. Chem. Soc.114, 10834 (1992).

  19. 19.

    D.W. Breck,Zeolite and Molecular Sieves (John Wiley & Sons, New York, 1974), p. 329.

  20. 20.

    F.G. Grant, Rev. Mod. Phys.31, 646 (1959).

  21. 21.

    F.P. Koffyberg, Cana. J. Phys.49, 435 (1971).

  22. 22.

    R.B. King,Encyclopedia of Inorganic Chemistry (John Willey & Sons, Chichester, 1994), p. 767.

  23. 23.

    H. Knözinger and E. Taglauer, Catalysis10, 1 (1993).

Download references

Author information

Correspondence to G. Q. Lu.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Zhao, X.S., Lu, G.Q. & Millar, G.J. Encapsulation of transition metal species into zeolites and molecular sieves as redox catalysts: Part I-preparation and characterisation of nanosized TiO2, CdO and ZnO semiconductor particles anchored in NaY zeolite. J Porous Mater 3, 61–66 (1996). https://doi.org/10.1007/BF01135362

Download citation

Keywords

  • zeolite NaY
  • semiconductor cluster
  • UV absorption
  • effective mass approximation