Theoretica chimica acta

, Volume 81, Issue 6, pp 391–404 | Cite as

Extension of the MNDO formalism tod orbitals: Integral approximations and preliminary numerical results

  • Walter Thiel
  • Alexander A. Voityuk


The point charge model for calculating the two-center two-electron integrals in MNDO and related methods is extended tod orbitals. It is suggested to expand these integrals in terms of semiempirical multipole-multipole interactions where all monopoles, dipoles and quadrupoles are included, and all higher multipoles are neglected. The proposed scheme has been implemented, and numerical results for the integrals are reported. A preliminary MNDO parametrization for chlorine indicates that the inclusion ofd orbitals improves the results significantly, compared with the original MNDO and related methods.

Key words

MNDO d orbitals 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Dewar MJS, Thiel W (1977) J Am Chem Soc 99:4899Google Scholar
  2. 2.
    Dewar MJS, Zoebisch EG, Healy EF, Stewart JJP (1985) J Am Chem Soc 107:3902Google Scholar
  3. 3.
    Stewart JJP (1989) J Comput Chem 10:209,221Google Scholar
  4. 4.
    Dewar MJS (1985) J Phys Chem 89:2145Google Scholar
  5. 5.
    Thiel W (1988) Tetrahedron 44:7393Google Scholar
  6. 6.
    Stewart JJP (1990) In: Lipkowitz KB, Boyd DB (eds) Reviews in computational chemistry, VCH Publ, New York, p 45Google Scholar
  7. 7.
    Hehre WJ, Radom L, Schleyer PvR, Pople JA (1986) Ab initio molecular orbital theory. Wiley, New YorkGoogle Scholar
  8. 8.
    Jug K, Schulz J (1988) J Comput Chem 9:40Google Scholar
  9. 9.
    Hoggan P, Rinaldi D (1987) Theor Chim Acta 72:47Google Scholar
  10. 10.
    Dewar MJS, Thiel W (1977) Theor Chim Acta 46:89Google Scholar
  11. 11.
    Roothaan CCJ (1951) J Chem Phys 19:1445Google Scholar
  12. 12.
    Glaeske HJ, Reinhold J, Volkmer P (1987) Quantenchemie. Band 5. Ausgewählte mathematische Methoden der Chemie. Hüthig, Heidelberg, p 307Google Scholar
  13. 13.
    Buckingham AD (1970) In: Eyring H, Henderson D, Jost W (eds) Physical chemistry, vol 4. Academic Press, New York, pp 349–386Google Scholar
  14. 14.
    Gray CG (1976) Can J Phys 54: 505, and references thereinGoogle Scholar
  15. 15.
    Price SL, Stone AJ, Alderton M (1984) Mol Phys 52:987Google Scholar
  16. 16.
    Stone AJ (1975) Mol Phys 29:1461Google Scholar
  17. 17.
    Klopman G (1964) J Am Chem Soc 86:4550Google Scholar
  18. 18.
    Thiel W (1981) J Am Chem Soc 103:1413Google Scholar
  19. 19.
    Stewart JJP (1990) Program MOPAC, version 6.0, QCPE no. 455; QCPE Bull 10:86Google Scholar
  20. 20.
    Liotard DA, Healy EF, Ruiz JM, Dewar MJS (1989) Program AMPAC, version 2.1, QCPE no. 506; QCPE Bull 9:123Google Scholar
  21. 21.
    Thiel W (1990) Program MNDO90, version 3.1Google Scholar
  22. 22.
    Hehre WJ, Stewart RF, Pople JA (1969) 51:2657Google Scholar
  23. 23.
    Freed KF (1983) Acc Chem Res 16:137Google Scholar
  24. 24.
    Freed KF, Sun H (1980) Isr J Chem 19:99Google Scholar
  25. 25.
    Sun H, Sheppard MG, Freed KF, Herman MF (1981) Chem Phys Lett 77:555Google Scholar
  26. 26.
    Schulz J, Iffert R, Jug K (1985) Int J Quantum Chem 27:461Google Scholar
  27. 27.
    Jug K, Iffert R, Schulz J (1987) Int J Quantum Chem 32:265Google Scholar
  28. 28.
    Dewar MJS, Rzepa HS (1983) J Comput Chem 4:158Google Scholar
  29. 29.
    Dewar MJS, Zoebisch EG (1988) J Mol Struct (Theochem) 180:1Google Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • Walter Thiel
    • 1
  • Alexander A. Voityuk
    • 1
  1. 1.Theoretische ChemieUniversität WuppertalWuppertal 1FRG

Personalised recommendations