Journal of Materials Science

, Volume 27, Issue 22, pp 5965–5981 | Cite as

Use of spray techniques to synthesize particulate-reinforced metal-matrix composites

  • T. S. Srivatsan
  • E. J. Lavernia


In an attempt to optimize the structure and properties of particulate-reinforced metal-matrix composites, a variety of novel synthesis techniques have evolved over the last few years. Among these, the technique of spray processing offers a unique opportunity to synergize the benefits associated with fine particulate technology, namely microstructural refinement and compositional modifications, coupled within situ processing, and in some cases, near-net shape manufacturing. Spray technology has resurrected much interest during the last decade and there now exists a variety of spray-based methods. These include spray atomization and deposition processing, low-pressure plasma deposition, modified gas welding techniques and high velocity oxyfuel thermal spraying. Spray processing involves the mixing of reinforcements with the matrix material under non-equilibrium conditions. As a result, these processes offer an opportunity of modifying and enhancing the properties of existing alloy Systems, and also developing novel alloy compositions. In principle, such an approach will inherently avoid the extreme thermal excursions, and the concomitant macrosegregation associated with conventional casting processes. Furthermore, the spray processing technique also eliminates the need to handle fine reactive particulates associated with powder metallurgical processes. In this paper, recent developments in the area of spray synthesis or processing of discontinuously reinforced metal-matrix composites are presented and discussed with particular emphasis on the synergism between processing, microstructure and mechanical properties.


Welding Spray Processing Conventional Casting Spray Atomization Compositional Modification 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. G. Fishman,J. Metals 38 (3) (1986) 26.Google Scholar
  2. 2.
    Y. Flom andR. J. Arsenault,Mater. Sci. Engng 77 (1986) 191.Google Scholar
  3. 3.
    T. W. Chou, A. Kelly andA. Okura,Composites 16 (1985) 187.Google Scholar
  4. 4.
    L. N. Mueller, J. L. Prohaska andJ. W. Davis, in “Proceedings of AIAA Aerospace Engineering Conference” (AIAA, Los Angeles, CA, 1985).Google Scholar
  5. 5.
    A. P. Divecha, S. G. Fishman andS. D. Karmarkar,J. Metals 33 (9) (1981) 12.Google Scholar
  6. 6.
    R. J. Arsenault,Mater. Sci. Engng 64 (1984) 171.Google Scholar
  7. 7.
    C. R. Crowe, R. A. Gray andD. F. Hasson, in “Proceedings of 5th International Conference on Composite Materials”, edited by W. C. Harrigan Jr, J. Strife and A. K. Dhingra (The Metallurgical Society of AIME, Warrendale, PA, 1985) p. 843.Google Scholar
  8. 8.
    S. V. Nair, J. K. Tien andR. C. Bates,Int. Metals Rev. 30 (1985) 275.Google Scholar
  9. 9.
    I. A. Ibrahim, F. A. Mohamed andE. J. Lavernia,J. Mater. Sci. 26 (1991) 1137.Google Scholar
  10. 10.
    C. R. Crowe andD. F. Hasson, in “Proceedings of the Sixth International Conference”, edited by R. C. Gifkins (Pergamon Press, Australia, 1982).Google Scholar
  11. 11.
    H. J. Rack,Adv. Mater. Manufact. Process. 3 (3) (1988) 327.Google Scholar
  12. 12.
    T. S. Srivatsan, I. A. Ibrahim, F. A. Mohamed andE. J. Lavernia,J. Mater. Sci. 27 (1992) 5965.Google Scholar
  13. 13.
    D. L. Davidson,Metall. Trans. 18A (1987) 2125.Google Scholar
  14. 14.
    D. L. McDanels,ibid. 16A (1985) 1105.Google Scholar
  15. 15.
    W. A. Logsdon andP. K. Liaw,Engng Fract. Mech. 24 (1986) 737.Google Scholar
  16. 16.
    S. Manoharan andJ. J. Lewandowski,Acta Metall. 38 (1990) 489.Google Scholar
  17. 17.
    D. L. Davidson,Engng Fract. Mech. 33 (1989) 965.Google Scholar
  18. 18.
    Idem, Metall. Trans. 22A (1991) 97.Google Scholar
  19. 19.
    Jian Ku Shang andR. O. Ritchie,ibid. 20A (1989) 897.Google Scholar
  20. 20.
    M. Gupta, F. A. Mohamed andE. J. Lavernia,Mater. Manufact. Process. 5 (2) (1990) 165.Google Scholar
  21. 21.
    Idem,Int. J. Rapid Solid. 8 (1992) in press.Google Scholar
  22. 22.
    S. Annavarapu, D. Apelian andA. Lawley,Metall. Trans. 19A (1988) 3077.Google Scholar
  23. 23.
    R. H. Bricknell,ibid. 17A (1986) 583.Google Scholar
  24. 24.
    J. Zhang, M. N. Gungor andE. J. Lavernia, in “Conference Proceedings of Eighth International Conference on Composite Materials”, ICCM-8, edited by S. W. Tsai and G. S. Springer (SAMPE, Covina, CA, 1991) pp. 17-H-1 to 17-H-12.Google Scholar
  25. 25.
    L. Z. Zhuang, I. Majewska-Glabus, R. Vetter andJ. Duszcyk,Scripta Metall. 24 (1990) 2025.Google Scholar
  26. 26.
    K. A. Kojima, R. E. Lewis andM. J. Kaufman, in “Aluminum Lithium Alloys V”, edited by T. H. Sanders Jr and E. A. Starke Jr (Materials and Component Engineering Publications, Birmingham, UK, 1989) p. 85.Google Scholar
  27. 27.
    E. J. Lavernia,Int. J. Rapid Solid. 5 (1989) 47.Google Scholar
  28. 28.
    T. C. Willis,Metals Mater. 4 (1988) 485.Google Scholar
  29. 29.
    A. R. E. Singer andS. Ozbek,Powder Metall. 28 (2) (1985) 72.Google Scholar
  30. 30.
    P. S. Grant, W. T. Kim, B. P. Bewlay andB. Cantor,Scripta Metall. 23 (1989) 1651.Google Scholar
  31. 31.
    A. L. Moran andW. A. Palko,J. Metals 40 (12) (1988) p. 12.Google Scholar
  32. 32.
    E. Gutierrez, E. J. Lavernia, G. Trapaga, J. Szekely andN. J. Grant,Metall. Trans. 20A (1989) 71.Google Scholar
  33. 33.
    D. Apelian, D. Wei andB. Farouk,ibid. 20B (1989) 251.Google Scholar
  34. 34.
    S. Sampath, B. Gudmundsson, R. Tiwari andH. Herman, in “Proceedings Third National Thermay Spray Conference”, Cincinnati, October 1988 (ASM International, Metals Park, OH, 1988).Google Scholar
  35. 35.
    R. Tiwari, H. Herman, S. Sampath andB. Gudmundsson, in ‘Proceedings of the Symposium on “Innovative Inorganic Composites”’, edited by S. G. Fishman (TMS, Warrendale, PA, 1991).Google Scholar
  36. 36.
    R. Tiwari, H. Herman andS. Sampath, presented at Materials Research Society, 1990 Fall Meeting.Google Scholar
  37. 37.
    S. Sampath, R. Tiwari, B. Gudmundsson andH. Herman,Scripta Metall. 25 (1991) 1425.Google Scholar
  38. 38.
    C. L. Buhrmaster, D. E. Clark andH. B. Smartt,J. Metals November40 (1988) 44.Google Scholar
  39. 39.
    D. W. Parker andG. L. Kutner,Adv. Mater. Process. 140 April (1991) 68.Google Scholar
  40. 40.
    Y. Wu andE. J. Lavernia,J. Metals 43 (8) (1991) 16.Google Scholar
  41. 41.
    D. R. Uhlmann, B. Chalmers andK. A. Jackson,J. Appl. Phys. 35 (1964) 2986.Google Scholar
  42. 42.
    G. F. Bolling andJ. Cisse,J. Crystal Growth 10 (1971) 56.Google Scholar
  43. 43.
    T. Ertuk, J. A. Cornie andR. G. Dixon, in “Interfaces in Metal Matrix Composites”, edited by A. K. Dhingra and S. G. Fishman, Conference Proceedings (TMS, Warrendale, PA, 1986) p. 239.Google Scholar
  44. 44.
    A. M. Zubko, V. G. Lobanov andV. V. Nikonova,Sov. Phys. Crystallogr. 18 (1973) 239.Google Scholar
  45. 45.
    R. Mehrabian, R. G. Riek andM. C. Flemings,Metall. Trans. 5A (1974) 1899.Google Scholar
  46. 46.
    M. K. Surappa andP. K. Rohatgi,J. Mater. Sci. Lett. 16 (1981) 765.Google Scholar
  47. 47.
    D. M. Stefanescu, B. K. Dhindaw, S. A. Kacar andA. Moitra,Metall. Trans. 19A (1988) 2847.Google Scholar
  48. 48.
    P. K. Rohatgi, R. Asthana andS. Das,Int. Metals Rev. 31 (3) (1988) p. 115.Google Scholar
  49. 49.
    I. A. Ibrahim, F. A. Mohamed andE. J. Lavernia, in “Advanced Aluminum and Magnesium Alloys”, edited by T. Khan and G. Effenberg (ASM International, Metals Park, OH, 1990) p. 745.Google Scholar
  50. 50.
    I. A. Ibrahim, E. J. Lavernia andF. A. Mohamed,J. Mater. Sci. 26 (1991) 1137.Google Scholar
  51. 51.
    T. S. Srivatsan, Manoj Gupta, F. A. Mohamed andE. J. Lavernia,Aluminium 68 (1992) in press.Google Scholar
  52. 52.
    T. S. Srivatsan, Rahul Auradkar, Amit Prakash andE. J. Lavernia, in “Fracture of Engineering Materials and Structures” (Pergamon Press, Singapore, 1991).Google Scholar
  53. 53.
    T. S. Srivatsan andE. J. Lavernia,Compos. Sci. Technol. (1992) submitted.Google Scholar
  54. 54.
    H. J. Rack andR. W. Krenzer,Metall. Trans. 8A (1977) 35.Google Scholar
  55. 55.
    H. J. Rack, in “Proceedings of the 6th International Conference on Composite Materials”, edited by F. L. Mathews, N. C. R. Bushkell, J. M. Hodgkinson and J. Morton (Elsevier Applied Science, London, 1987) p. 2.382.Google Scholar
  56. 56.
    W. A. Johnson, “Baseline property and fabrication data for Silicon Carbide Whisker Reinforced Aluminum Alloy”, Final Report, Contract N60921-81-C-A238 (1984).Google Scholar
  57. 57.
    H. J. Rack, in “Dispersion Strengthened Aluminum Alloys”, edited by Y-M Kim (Metallurgical Society of AIME, Warrendale, PA, 1990) p. 649.Google Scholar
  58. 58.
    H. J. Rack,Mater. Sci. Engng 29 (1977) 179.Google Scholar
  59. 59.
    J. E. Hatch (ed.), “Aluminum: Properties and Metallurgy” (ASM, Metals Park, OH, 1984).Google Scholar
  60. 60.
    M. Vogelsang, R. J. Arsenault andR. M. Fisher,Metall. Trans. 17A (1986) 379.Google Scholar
  61. 61.
    R. Arone, O. Botstein andB. Shpigler,Israel J. Technol. 24 (1988) 393.Google Scholar
  62. 62.
    P. Niskanen andW. R. Mohn,Adv. Mater. Process. 3 (1988) 39.Google Scholar
  63. 63.
    J. White, I. G. Palmer, I. R. Hughes andS. A. Court, in “Aluminum-Lithium Alloys V”, edited by E. A. Starke Jr and T. H. Sanders Jr (Materials and Component Engineering Publication, Birmingham, UK, 1989) p. 1635.Google Scholar
  64. 64.
    T. S. Srivatsan, Rahul Auradkar, E. J. Lavernia andAmit Prakash,Mater. Trans. JIM 32 (1991) 473.Google Scholar
  65. 65.
    L. F. Coffin,Trans. ASME 76 (1954) 931.Google Scholar
  66. 66.
    S. S. Manson, NASA Technical Note, 12954 (NASA, Cleveland, OH) p. 2933.Google Scholar
  67. 67.
    A. Sickinger andE. Muehlberger, Electroplasma Inc., Irvine CA (1991) current research.Google Scholar
  68. 68.
    P. S. Khadkikar, K. Vedula andB. S. Shabel,Mater. Res. Soc. Symp. Proc. 81 (1987) 157.Google Scholar
  69. 69.
    K. M. Chang, A. I. Taub andS. C. Huang,ibid. 39 (1985) 335.Google Scholar
  70. 70.
    A. I. Taub andM. R. Jackson,ibid. 58 (1986) 389.Google Scholar
  71. 71.
    R. Tiwari andH. Herman,Scripta Metall. in press.Google Scholar
  72. 72.
    H. Hertz,J. Reine Angew Math. 92 (1891) p. 156.Google Scholar
  73. 73.
    D. G. Rickerby andN. H. Macmillan, in “Proceedings of the 5th International Conference on Erosion by Liquid and Solid Impact”, Cambridge, UK (Cambridge University Press, 1979) p. 29.Google Scholar

Copyright information

© Chapman & Hall 1992

Authors and Affiliations

  • T. S. Srivatsan
    • 1
  • E. J. Lavernia
    • 2
  1. 1.Department of Mechanical EngineeringThe University of AkronAkronUSA
  2. 2.Materials Science and Engineering, Department of Mechanical and Aerospace EngineeringUniversity of CaliforniaIrvineUSA

Personalised recommendations