Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Linearization of differential connection in quadratic constraints of the optimal control problem linear in control

  • 16 Accesses

This is a preview of subscription content, log in to check access.

Literature Cited

  1. 1.

    E. S. Levitin, A. A. Milyutin, and N. P. Osmolovskii, ’High-order conditions of local minimum in constrained problems,’ UMN,33, No. 6, 85–148 (1978).

  2. 2.

    E. S. Levitin, A. A. Milyutin, and N. P. Osmolovskii, ’Theory of high-order conditions in smooth constrained-extremum problems,’ in: Theoretical and Applied Topics of Optimal Control [in Russian], Nauka, Novosibirsk (1985), pp. 4–40.

  3. 3.

    A. V. Dmitruk, ’Quadratic conditions of Pontryagin minimum in the optimal control problem linear in control and with control constraints,’ Dokl. Akad. Nauk SSSR,272, No. 2, 285–289 (1983).

  4. 4.

    A. V. Dmitruk, ’Quadratic conditions of Pontryagin minimum in an optimal control problem linear in control. I. Deciphering theorem,’ Izv. Akad. Nauk SSSR, Ser. Matem.,50, No. 2, 284–312 (1986).

Download references

Additional information

Translated from Optimal'nost’ Upravlyaemykh Dinamicheskikh Sistem, No. 19, pp. 12–20, Vsesoyuznyi Nauchno-Issledovatel'skii Institut Sistemnykh Issledovanii, Moscow (1988).

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Dmitruk, A.V. Linearization of differential connection in quadratic constraints of the optimal control problem linear in control. Comput Math Model 3, 393–401 (1992). https://doi.org/10.1007/BF01133067

Download citation

Keywords

  • Mathematical Modeling
  • Control Problem
  • Computational Mathematic
  • Industrial Mathematic
  • Optimal Control Problem