Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Topographic analysis of visual evoked potentials from flash and pattern reversal stimuli: Evidence for “travelling waves”

  • 76 Accesses

  • 14 Citations

Summary

In this mapping study of the entire scalp area, the responses to flash (FL) and pattern reversal (PR) stimuli were studied in 34 normal subjects. The N70, P100, N135 and P180 were similar from both stimuli but with some differences in amplitude and latency, especially the variability of the latency of P100 from FL. A polarity inversion was usually seen for all components, especially at opposite ends of the scalp and a zero-potential was noted for all four components near Cz Pz. Evidence is seen that the frontal N100 is likely not the other end of a dipole involving the posterior P100. Lateral components as P120, N150 and N200 were also described. The major finding was evidence of "travelling" waves that appear to move in both the AP and PA directions throughout the scalp that eventually arrive on the posterior regions and appear as N70, P100, N135 and P180.

This is a preview of subscription content, log in to check access.

References

  1. Allison, T., Matsumiya, Y., Goff, G.D., and Goff, W.R. The scalp topography of human visual evoked potentials. Electroenceph. Clin. Neurophysiol. 1977, 42: 185–197.

  2. Braitenberg, V. Cortical architectonics: general and areal. In: M.A.B. Brazier, H. Petsche (Eds.) Architechtonics of the Cerebral Cortex. Raven Press, New York, 1978, 443–446.

  3. Branston, N.M. and Fleming, D.G. Efferent fibers in the frog optic nerve. Exp. Neur. 1968, 20: 611–623.

  4. Cajal, R.Y. The Structure of the Retina (trans. by S.A. Thorpe and M. Glickstein). Springfield, IL, C.C. Thomas, 1972 (Orig. Publ. 1892).

  5. Celesia, G.G. Visual evoked potentials and electroretinograms. In: E. Niedermeyer, and F. Lopes da Silva, (Eds.) Electroencephalography. 2nd Ed. Urban and Schwarzenberg, Baltimore. 1987, 773–795.

  6. Ciganek, L. The EEG response (evoked potential) to light stimulus in man. Electroenceph. Clin. Neurophysiol., 1961, 13: 165–172.

  7. Cobb, W.A., and Dawson, G.D. The latency and form in man of the occipital potentials evoked by bright flashes, J. Physiol., 1960, 152: 108–121.

  8. Cooper, R. and Mundy-Castle, A.C. Spatial and temporal characteristics of the alpha rhythm topographic analysis. Electroenceph. Clin. Neurophysiol. 1960, 12: 153–165.

  9. Cracco, K.Q., and Cracco, J.B. Visual evoked potential in man: early oscillatory potentials. Electroenceph. Clin. Neurophysiol. 1978, 45: 731–739.

  10. Dowling, J.E. and Cowan, W.M. An electronmicroscopy study of normal and degenerating centrifugal fiber terminals in the pigeon retina. Zeitschr. f. Zellforsch. 1966, 170: 205–228.

  11. Duffy, F.H. Topographic mapping of brain electrical activity: clinical applications and issues. In: K. Maurer, (Ed.) Topographic Brain Mapping of EEG and Evoked Potentials. Springer-Verlag, Berlin, 1989, 19–52.

  12. Feinsod, M., Hoyt, W.F., Wilson, B.W. and Spire, J.P. The use of visual evoked potential in patients with multiple sclerosis. In J.E. Desmedt (Ed.) Visual Evoked Potentials in Man: New Developments. Clarendon Press, Oxford, 1977, 458–460.

  13. Galambos, R. Suppression of auditory nerve activity by stimulation of efferent fibers to cochlea. J. Neurophysiol., 1956, 19: 424–437.

  14. Goldman, S., Vivian, W.E., Chien, C.K. and Bowes, H.N. Electronic mapping of the activity of the heart and the brain. Science, 1948, 24:720–723.

  15. Guidi, M., Scarpino, O., Angeleri, F. and Bickford, R.G. N100 frontal component and influence of reference location in pattern visual evoked potential studied with the area display technique. In: K. Maurer, (Ed.) Topographic Brain Mapping of EEG and Evoked Potentials. Springer-Verlag, Berlin, 1989, 366–372.

  16. Halliday, A.M., McDonald, W.I. and Mushin, J. Delayed visual evoked response in optic neuritis. Lancet, 1972, 1:982–985.

  17. Hammond, E.J., Barber, C.P. and Wilder, B.J. Flash visual evoked potential topographic mapping: normative and clinical data. In: K. Maurer, (Ed.) Topographic Brain Mapping of EEG and Evoked Potentials. Springer-Verlag, Berlin, 1989, 265–272.

  18. Harding, G.F.A. A flash of light: A personal review of 21 years of study of the electrical activity of the visual pathway beyond the retina. Ophthalmol. Physiol. Opt., 1984, 4: 293–304.

  19. Harding, G.F.A. and Rubinstein, N.P. The scalp topography of the human visually evoked subcortical potential. Invest. Ophthalmol. Vis. Sci. 1980, 19: 318–321.

  20. Jansen, B.H. and Brandt, M.E. The effect of the phase of prestimulus alpha activity on the averaged visual evoked response. Electroenceph. Clin. Neurophysiol., 1991, 80: 241–250.

  21. Lesèvre, N. Chronotopographical analysis of the human evoked potential in relation to the visual field (data from normal individual and hemianoptic patients). In: I. Bodis-Wollner (Ed.) Evoked Potentials. Annals of the N.Y. Acad. Sci. 1982, 388: 156–182.

  22. Lesèvre, N. and Rémond, A. Potentials evoques par l' apparition de pattern: effets de la dimension du pattern et de la devisite des contrastes. Electroenceph. Clin. Neurophysiol., 1972, 32: 593–607.

  23. Lesèvre, N. and Rémond, A. Selected application of a topographic approach to event-related potentials. In: F.H. Duffy (Ed.) Topographic Mapping of Brain Electrical Activity. Butterworths, Boston. 1986, 143–167.

  24. Lilly, J.C. and Cherry, R.B. Surface movements of click responses from acoustic cerebral cortex of cat: leading-and trailing edges of a response figure. J. Neurophysiol. 1954, 17: 521–532.

  25. Maier, J., Dagnelie, G., Spekreijse, H. and Van Dijk, B.W. Principal components analyses for source localization of VEPs in man. Vision Res., 1987, 27: 165–177.

  26. Mauguière, F., Giard, N.H., Ibanez, V. and Pernier, J. Sequential spatial maps of evoked potential by checkerboard pattern response topography. Rev. EEG Neurophysiol. Clin. 1984, 15: 129–137.

  27. Moller, A.R., Burgess, J.E. and Sekhar, L.N. Recording compound action potentials from the optic nerve in man and monkeys. Electroenceph. Clin. Neurophysiol. 1987, 67: 549–555.

  28. Nunez, P.L. Electric Fields of the Brain: The Neurophysics of EEG. Oxford University, Press, New York, 1981.

  29. Nunez, P.L. Generation of human EEG by a combination of long and short range neocortical interactions. Brain Topogr., 1989, 1(3): 199–215.

  30. Nunez P.L., Pilgreen K.L. and Law S.K. Mapping of evoked potentials. In: C. Barber and M.J. Taylor (Eds.) Evoked Potentials Review. No. 4. IEPS Publications, Nottingham, 1991, 57–64.

  31. Onofrj, N., Bazzano, S., Malatesta, G. and Fulgente T. Mapped distribution of pattern reversal VEPs to central field and lateral half-field stimuli of different spatial frequencies. Electroenceph. Clin. Neurophysiol. 1991, 80: 167–180.

  32. Ossenblok, P. and Spekreijse, H. The extrastriate generators of the EP to checkerboard onset. A source localization approach. Electroenceph. Clin. Neurophysiol. 1991, 80: 181–193.

  33. Perez-Arroyo, M. and Chiappa, K.H. Early visual evoked potentials in normal subjects and brain-dead patients. Electroenceph. Clin. Neurophysiol., 1985, 61(3): S538.

  34. Petsche, H. Pathophysiologie und Klinik des Petit Mal. Toposkopische Untersuchen zur Phanomenologie des Spike-Wave-Musters. Wien. Z. Nervenheilk. 1962, 19: 345–422.

  35. Petsche, H. and Marko, A. Toposkopische Untersuchen zur Ausbreitung des Alpharhythmus. Wien. Z. Nervenheilk. 1955, 12: 87–100.

  36. Petsche, H. and Stumpf. Ch. Topographic and toposcopic study of origin and spread of the regular synchronized arousal pattern in the rabbit. Electroenceph. Clin. Neurophysiol. 1960, 12: 589–600.

  37. Petsche, H., Rappelsberger, P. and Trappl, R. Properties of cortical seizure potential fields. Electroenceph. Clin. Neurophysiol., 1970, 29: 567–578.

  38. Pratt, H, Bleich, N. and Berliner, E. Short latency visual evoked potentials in man. Electroenceph. Clin. Neurophysiol., 1982, 54: 55–62.

  39. Regan, D. Human Brain Electrophysiology. Elsevier, New York. 1989, 434.

  40. Shipton, H.W. An improved electrotoposcope. Electroenceph. Clin. Neurophysiol., 1957, 9: 82

  41. Shortess, O.K. Some comments on the functional significance of centrifugal fibers to the vertebrate retina. In: J.C. Armington, J. Krauskopf, and B.R. Wooten. (Eds.) Visual Psychophysics and Physiology. Academic Press, New York, 1978, 85–92.

  42. Skrandies, W. Visual evoked potential topography methods and results. In: F.H. Duffy (Ed.) Topographic Mapping of Brain Electrical Activity. Butterworths, Boston. 1986, 7–28.

  43. Skrandies, W. Visual evoked potential topography: Physiological and cognitive components. In: K. Maurer (Ed.) Topographic Brain Mapping and Evoked Potentials. Springer-Verlag, Berlin. 1989, 337–359.

  44. Siegfried, J.B. and Lukas, J. Early wavelets in the VECP. Invest. Opthalmol. Vis. Sci. 1981, 20: 125–129.

  45. Stok, C.J. The Inverse Problem in EEG and MEG with Application to Visual Evoked Response. Thesis Dissertation. Rijksuniversiteit Leiden, Leiden, Krips Repro Meppel. 1986: 1–149.

  46. Thatcher, R.W., Krause, P.J. and Hrybyk, M. Cortico-cortical associations and EEG coherence: a two compartmental model. Electroenceph. Clin. Neurophysiol., 1986, 64: 123–143.

  47. Walter, W.G. Toposcopy. Third International EEG Congress. Elsevier, Amsterdam. 1953, 7–16.

  48. Whittaker, S.G. and Siegfried, J.B. Origin of wavelets in the visual evoked potential. Electroenceph. Clin. Neurophysiol. 1983, 55: 91–101.

  49. Van Hasselt, P. A short latency visual evoked potential recorded from the human mastoid process and auricle. Electroencephal. Clin. Neurophysiol. 1972, 33: 517.

Download references

Author information

Correspondence to John R. Hughes.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hughes, J.R., Kuruvilla, A. & Fino, J.J. Topographic analysis of visual evoked potentials from flash and pattern reversal stimuli: Evidence for “travelling waves”. Brain Topogr 4, 215–228 (1992). https://doi.org/10.1007/BF01131153

Download citation

Key words

  • Topographic analysis
  • Visual evoked potential
  • Flash
  • Pattern reversal
  • Travelling waves