Continuum Mechanics and Thermodynamics

, Volume 4, Issue 3, pp 167–175 | Cite as

Continuum theory for nematic liquid crystals

  • F. M. Leslie


This paper presents a formulation of continuum theory for nematic liquid crystals based upon the balance laws for linear and angular momentum, that derives directly expressions for stress and couple stress in these transversely isotropic liquids. This approach therefore avoids the introduction of generalised forces or torques associated with the director describing the axis of transverse isotropy.


Torque Angular Momentum Liquid Crystal Isotropy Generalise Force 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Oseen, W.C.: The theory of liquid crystals. Trans. Faraday Soc. 29 (1933) 883–899Google Scholar
  2. 2.
    Zocher, H.: The effect of a magnetic field on the nematic state. Trans. Faraday Soc. 29 (1933) 945–957Google Scholar
  3. 3.
    Frank, F.C.: On the theory of liquid crystals. Discussions Faraday Soc. 25 (1958) 19–28Google Scholar
  4. 4.
    Ericksen, J.L.: Hydrostatic theory of liquid crystals. Arch. Rat. Mech. Anal. 9 (1962) 371–378Google Scholar
  5. 5.
    Ericksen, J.L.: Conservation laws for liquid crystals. Trans. Soc. Rheol. 5 (1961) 23–34Google Scholar
  6. 6.
    Leslie, F.M.: Some constitutive equations for liquid crystals. Arch. Rat. Mech. Anal. 28 (1968) 265–283Google Scholar
  7. 7.
    de Gennes, P.G.: The physics of liquid crystals. Oxford University Press, London and New York, 1974Google Scholar
  8. 8.
    Chandrasekhar, S.: Liquid crystals. Cambridge University Press, 1977Google Scholar
  9. 9.
    Blinov, L. M.: Electro-optical and magneto-optical properties of liquid crystals. John Wiley and Sons, New York, 1983Google Scholar
  10. 10.
    Stephen, M.J. and Straley, J.P.: Physics of liquid crystals. Rev. Mod. Phys. 46 (1974) 617–704Google Scholar
  11. 11.
    Ericksen, J.L.: Equilibrium theory of liquid crystals. Adv. Liq. Cryst. 2 (1976) 233–298Google Scholar
  12. 12.
    Jenkins, J.T.: Flows of nematic liquid crystals. Ann. Rev. Fluid Mech. 10 (1978) 197–219Google Scholar
  13. 13.
    Leslie, F.M.: Theory of flow phenomena in liquid crystals. Adv. Liq. Cryst. 4 (1979) 1–81Google Scholar
  14. 14.
    Truesdell, C. and Toupin, R.A.: The classical field theories. Handbuch der Physik, Bd. III/1, (1960) 225–793Google Scholar
  15. 15.
    Nehring, J. and Saupe, A.: On the elastic theory of uniaxial liquid crystals. J. Chem. Phys. 54 (1971) 337–343Google Scholar
  16. 16.
    Oldano, C. and Barbero, G.: Possible boundary discontinuities of the tilt angle in nematic liquid crystals. J. Physique Lett. 46 (1985) 451–456Google Scholar
  17. 17.
    Hinov, H.P.: Comment on the criticism of the one-dimensional solution of theK 13 elastic problem in nematics. Mol. Cryst. Liq. Cryst. 168 (1989) 7–12Google Scholar
  18. 18.
    Green, A.E. and Rivlin, R.S.: Simple force and stress multipoles. Arch. Rat. Mech. Anal. 16 (1964) 325–353Google Scholar
  19. 19.
    Green, A.E. and Rivlin, R.S.: Multipolar continuum mechanics. Arch. Rat. Mech. Anal. 17 (1964) 113–147Google Scholar
  20. 20.
    Hinov, H.P.: On the variation of theK 13 nematic surface-like volume energy and the nematic surface energy of Mada. Mol. Cryst. Liq. Cryst. 148 (1987) 197–224Google Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • F. M. Leslie
    • 1
  1. 1.Dept. of MathematicsUniversity of StrathclydeGlasgowScotland

Personalised recommendations