Journal of Materials Science

, Volume 26, Issue 9, pp 2287–2292 | Cite as

Deformation mechanisms in negative Poisson's ratio materials: structural aspects

  • R. Lakes
Papers

Abstract

Poisson's ratio in materials is governed by the following aspects of the microstructure: the presence of rotational degrees of freedom, non-affine deformation kinematics, or anisotropic structure. Several structural models are examined. The non-affine kinematics are seen to be essential for the production of negative Poisson's ratios for isotropic materials containing central force linkages of positive stiffness. Non-central forces combined with pre-load can also give rise to a negative Poisson's ratio in isotropic materials. A chiral microstructure with noncentral force interaction or non-affine deformation can also exhibit a negative Poisson's ratio. Toughness and damage resistance in these materials may be affected by the Poisson's ratio itself, as well as by generalized continuum aspects associated with the microstructure.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. S. Lakes,Science 235 (1987) 1038.Google Scholar
  2. 2.
    E. A. Friis, R. S. Lakes andJ. B. Park,J. Mater. Sci. 23 (1988) 4406.Google Scholar
  3. 3.
    R. S. Lakes, in “Developments in Mechanics”, Vol. 14, Proceedings, 20th Midwest Mechanics Conference, Purdue University, 31 August–2 September 1987, pp. 758–63.Google Scholar
  4. 4.
    A. W. Lipsett andA. I. Beltzer,J. Acoust. Soc. Amer. 84 (1988) 2179.Google Scholar
  5. 5.
    A. Freedman,J. Sound Vibration 137 (1990) 209.Google Scholar
  6. 6.
    C. P. Chen andR. S. Lakes,J. Cellular Polym. 8 (1989) 343.Google Scholar
  7. 7.
    L. J. Gibson, M. F. Ashby, G. S. Schajer andC. I. Robertson,Proc. Roy. Soc. Lond. A382 (1982) 25.Google Scholar
  8. 8.
    F. Homand-Etienne andR. Houpert,Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 26 (1989) 125.Google Scholar
  9. 9.
    A. Nur andG. Simmons,Earth Planet. Sci. Lett. 7 (1969) 183.Google Scholar
  10. 10.
    B. D. Caddock andK. E. Evans,J. Phys. D Appl. Phys. 22 (1989) 1877.Google Scholar
  11. 11.
    K. E. Evans andB. D. Caddock,ibid. 22 (1989) 1883.Google Scholar
  12. 12.
    C. T. Herakovich,J. Compos. Mater. 18 (1985) 447.Google Scholar
  13. 13.
    S. W. Tsai andH. T. Hahn, “Introduction to composite materials” (Technomic, Lancaster, PA, 1980).Google Scholar
  14. 14.
    M. Miki andY. Morotsu,JSME Int. J. 32 (1989) 67.Google Scholar
  15. 15.
    A. M. Garber,Aerospace Engng 22 (1963) 126.Google Scholar
  16. 16.
    N. Bettenbouche, G. A. Saunders, E. F. Lambson andW. Hönle,J. Phys. D. Appl. Phys. 22 (1989) 670.Google Scholar
  17. 17.
    M. Ya. Popereka andV. G. Balagurov,Sov. Phys. Solid State 11 (1970) 2938.Google Scholar
  18. 18.
    R. F. Almgren,J. Elasticity 15 (1985) 427.Google Scholar
  19. 19.
    K. E. Evans,J. Phys. D Appl. Phys. 22 (1989) 1870.Google Scholar
  20. 20.
    G. Simmons andH. Wang, “Single crystal elastic constants and calculated aggregate properties: a handbook”, 2nd Edn (MIT Press, Cambridge, 1971).Google Scholar
  21. 21.
    J. H. Weiner, “Statistical Mechanics of Elasticity” (Wiley, NY, 1983).Google Scholar
  22. 22.
    S. P. Timoshenko, “History of Strength of Materials” (Dover, NY, 1983).Google Scholar
  23. 23.
    A. E. H. Love, “A Treatise on the Mathematical Theory of Elasticity”, 4th Edn (Dover, NY, 1944).Google Scholar
  24. 24.
    J. F. Nye, “Physical Properties of Crystals” (Clarendon Press, Oxford, 1976).Google Scholar
  25. 25.
    L. J. Gibson andM. Ashby, “Mechanics of cellular solids” (Pergamon, Oxford, New York, 1988).Google Scholar
  26. 26.
    A. G. Kolpakov,Prikl. Mat. Mekh. 59 (1985) 969.Google Scholar
  27. 27.
    K. Berglund,Arch. Mech. 29 (1977) 383.Google Scholar
  28. 28.
    R. J. Bathurst andL. Rothenburg,Int. J. Engng Sci. 26 (1988) 373.Google Scholar
  29. 29.
    T. R. Tauchert,Recent Adv. Engng Sci. 5 (1970) 325.Google Scholar
  30. 30.
    K. W. Wojciechowski,Phys. Lett. A 137 (1989) 60.Google Scholar
  31. 31.
    E. Cosserat andF. Cosserat, “Théorie des Corps Deformables” (Hermann, Paris, 1909).Google Scholar
  32. 32.
    A. C. Eringen, in “Fracture”, Vol.1 (Academic, New York, 1968) pp. 621–729.Google Scholar
  33. 33.
    S. Burns,Science 238 (1987) 551.Google Scholar
  34. 34.
    R. S. Lakes,ibid. 238 (1987) 551.Google Scholar
  35. 35.
    R. S. Lakes,Int. J. Solids Structures 22 (1986) 55.Google Scholar
  36. 36.
    R. S. Lakes andR. L. Benedict,Int. J. Engng Sci. 29 (1982) 1161.Google Scholar
  37. 37.
    R. D. Mindlin,Arch. Rational Mech. Anal. 16 (1964) 51.Google Scholar
  38. 38.
    A. C. Eringen, “Mechanics of micromorphic continua”, IUTAM symposium, “Mechanics of Generalized Continua”, edited by E. Kröner (Springer Verlag, 1968).Google Scholar
  39. 39.
    J. L. Bleustein,Int. J. Solids Structures 2 (1960) 83.Google Scholar
  40. 40.
    S. C. Cowin,Q. J. Mech. Appl. Math. 37 (1984) 441.Google Scholar
  41. 41.
    E. D. Case,J. Mater. Sci. 19 (1984) 3702.Google Scholar
  42. 42.
    O. G. Ingles, I. K. Lee andR. C. Neil,Rock Mech. 5 (1973) 203.Google Scholar
  43. 43.
    S. Hirotsu,Macromol. 23 (1990) 903.Google Scholar
  44. 44.
    J. Cherfas,Science 247 (1990) 630.Google Scholar

Copyright information

© Chapman and Hall Ltd 1991

Authors and Affiliations

  • R. Lakes
    • 1
  1. 1.Departments of Biomedical Engineering, and Mechanical Engineering, and Center for Laser Science and EngineeringUniversity of IowaIowa CityUSA

Personalised recommendations