Brain Topography

, Volume 3, Issue 1, pp 3–12 | Cite as

Quantified Neurophysiology with mapping: Statistical inference, Exploratory and Confirmatory data analysis

  • Frank H. Duffy
  • Kenneth Jones
  • Peter Bartels
  • Marilyn Albert
  • Gloria B. McAnulty
  • Heidelise Als


Topographic mapping of brain electrical activity has become a commonly used method in the clinical as well as research laboratory. To enhance analytic power and accuracy, mapping applications often involve statistical paradigms for the detection of abnormality or difference. Because mapping studies involve many measurements and variables, the appearance of a large data dimensionality may be created. If abnormality is sought by statistical mapping procedures and if the many variables are uncorrelated, certain positive findings could be attributable to chance. To protect against this undesirable possibility we advocate the replication of initial findings on independent data sets. Statistical difference attributable to chance will not replicate, whereas real difference will reproduce. Clinical studies must, therefore, provide for repeat measurements and research studies must involve analysis of second populations. Furthermore, Principal Components Analysis can be employed to demonstrate that variables derived from mapping studies are highly intercorrelated and data dimensionality substantially less than the total number of variables initially created. This reduces the likelihood of capitalization on chance. The need to constrain alpha levels is not necessary when dimensionality is low and/or a second data set is available. When only one data set is available in research applications, techniques such as the Bonferroni correction, the "leave-one-out" method, and Descriptive Data Analysis (DDA) are available. These techniques are discussed, clinical and research examples are given, and differences between Exploratory (EDA) and Confirmatory Data Analysis (EDA) are reviewed.

Key words

Electroencephalography (EEG) Evoked potentials (EP) Quantified electroencephalography (qEEG) Brain electrical activity mapping (BEAM) Significance probability mapping (SPM) Principal components analysis (PCA) 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abt, K. Problems of repeated significance testing. Controlled Clinical Trials, 1981, 1: 377–381.PubMedGoogle Scholar
  2. Abt, K. Significance testing of many variables - Problems and solutions. Neuropsychobiol., 1983, 9: 47–51.Google Scholar
  3. Abt, K. Descriptive data analyses: A concept between confirmatory and exploratory data analysis. Methods of Information in Medicine, 1987, 26: 77–88.PubMedGoogle Scholar
  4. Abt, K. Descriptive data analysis (DDA) in Quantitative EEG studies. In: D. Samson-Dollfus, J. D. Guieu, J. Gotman and P. Etevenon (Eds.), Statistics and Topography in Quantitative EEG. Amsterdam: Elsevier, 1988, 150–160.Google Scholar
  5. Achim, A., Richer, F., Alain, C. and Saint-Hilaire, J. M. A test of model adequacy applied to the dimensionality of multichannel average auditory evoked potentials. In: D. Samson-Dollfus, J. D. Guieu, J. Gotman and P. Etèvenon (Eds.), Statistics and Topography in Quantitative EEG. Amsterdam: Elsevier, 1988, 161–171.Google Scholar
  6. Bartels, P. H. Numerical evaluation of cytologic data IX. Search for data structure by principal components transformation. Analytical Quant. Cytol., 1981a, 3: 167–177.Google Scholar
  7. Bartels, P. H. Numerical evaluation of cytologic data VIII. computation of the principal components. Analytical Quant. Cytol., 1981b, 3: 83–90.Google Scholar
  8. Chiappa, K. H. Evoked Potentials in Clinical Medicine. New York: Raven Press 1983.Google Scholar
  9. Coburn, K. L. and Moreno, M. A. Facts and artifacts in brain electrical activity mapping. Brain Topography, 1988, 1: 37–45.PubMedGoogle Scholar
  10. Dixon, W. BMDP Statistical Software (revised edition). Berkeley: University of California Press, 1985.Google Scholar
  11. Duffy, F. H. Topographic display of evoked potentials: Clinical applications of brain electrical activity mapping (BEAM). Ann. NY Acad. Sci., 1982, 388: 183–196.PubMedGoogle Scholar
  12. Duffy, F. H. Topographic Mapping of Brain Electrical Activity. Boston: Butterworths, 1986.Google Scholar
  13. Duffy, F. H. Clinical decision making in quantified electroencephalographic analysis. In: D. Samson-Dollfus, J. Gotman, J. D. Guieu and P. Etèvenon (Eds.), Statistics and Topography in Quantitative EEG, Paris: Elsevier, 1988a, 9–26.Google Scholar
  14. Duffy, F. H. Issues facing the clinical use of brain electrical activity. In: G. Pfurtscheller (Ed.), Functional Brain Imaging. Stuttgart: Hans Huber Publishers, 1988b, 149–160.Google Scholar
  15. Duffy, F. H. Topographic mapping of brain electrical activity: Clinical applications and issues. In: K. Maurer (Ed.), Topographic Brain Mapping of EEG and Evoked Potentials Heidelberg, Germany: Springer-Verlag, 1989, 19–52.Google Scholar
  16. Duffy, F. H., Albert, M. S. and McAnulty, G. Brain electrical activity in patients with presenile and senile dementia of the Alzheimer's type. Ann. Neurol., 1984a, 16: 439–448.PubMedGoogle Scholar
  17. Duffy, F. H., Albert, M. S., McAnulty, G. and Garvey, A. J. Age-related differences in brain electrical activity mapping of healthy subjects. Ann. Neurol., 1984b, 16: 430–438.PubMedGoogle Scholar
  18. Duffy, F. H., Bartels, P. H. and Burchfiel, J. L. Significance probability mapping: An aid in the topographic analysis of brain electrical activity. Electroenceph. Clin. Neurophysiol., 1981, 51: 455–462.PubMedGoogle Scholar
  19. Duffy, F. H., Bartels, P. H. and Neff, R. N. A response to Oken and Chiappa. Ann. Neurol., 1986, 19: 494–495.Google Scholar
  20. Duffy, F. H., Burchfiel, J. L. and Lombroso, C. T. Brain electrical activity mapping (BEAM): A method for extending the clinical utility of EEG and evoked potential data. Ann. Neurol., 1979, 5: 309–321.PubMedGoogle Scholar
  21. Duffy, F. H., Jensen, F., Erba, G., Burchfiel, J. L. and Lombroso, C. T. Extraction of clinical information from electroencephalographic background activity - the combined use of brain electrical activity mapping and intravenous sodium thiopental. Ann. Neurol., 1984, 15: 22–30.PubMedGoogle Scholar
  22. Faux, S. F., Torello, M., McCarley, R. W., Shenton, M. and Duffy, F. H. 300 topography alterations in schizophrenia: A replication study. Electroenceph. Clin. Neurophysiol., 1987, 40: 688–694.Google Scholar
  23. Garber, J. H., Weilburg, J. B., Duffy, F. H. and Manschreck, T. C. Clinical use of topographic brain electrical activity mapping in psychiatry. J. Clin. Psychiat., in press.Google Scholar
  24. Gruzelier, J. H., Liddiard, D. M., Wilson, L., Schellenberg, R., Davis, L. and Peters, E. Validation of EEG topographical mapping with neuropsychological tests. In: D. Samson-Dollfus, J. D. Guieu, J. Gotman and P. Etevenon (Eds.), Statistics and Topography in Quantitative EEG. Amsterdam: Elsevier, 1988, 10–118.Google Scholar
  25. Holm, S. A simple sequentially rejective multiple test procedure. Scand. J. Stat., 1979, 6: 65–70.Google Scholar
  26. Jerrett, S. and Corsak, J. Clinical utility of topographic EEG brain mapping. Clin. Electroenceph., 1988, 19: 134–143.Google Scholar
  27. John, E.R., Walker, P., Cawood, D., Rush, N. and Gehrmann, J. Factor analysing evoked potentials. Electroenceph. Clin. Neurophysiol., 1973, 24: 33–43.Google Scholar
  28. John, E. R., Prichep, L. S., Fridman, J. and Easton. Neurometrics: Computer- assisted differential diagnosis of brain dysfunctions. Science, 1988, 239: 162–169.PubMedGoogle Scholar
  29. Kahn, E. M., Weiner, D. W., Brenner, R. P. and Coppola, R. Topographic maps of brain electrical activity - pitfalls and precautions. Biol. Psychiat., 1988, 23: 628–636.PubMedGoogle Scholar
  30. Kavanagh, R. N., Darcey, T. M. and Fender, D. H. The dimensionality of the human visual evoked scalp potential. Electroenceph. Clin. Neurophysiol., 1976, 40: 633–644.PubMedGoogle Scholar
  31. Lachenbruch, P. and Mickey, R. M. Estimation of error rates in discriminant analysis. Technometrics, 1968, 10: 1–11.Google Scholar
  32. Lombroso, C. T. and Duffy, F. H. Brain electrical activity mapping as an adjunct to CT scanning. In: R. Canger, F. Angeleri and J. K. Perry (Eds.), Advances in Epileptology: Proceedings of XIth Epilepsy International Symposium, New York: Raven Press, 1980, 83–88.Google Scholar
  33. Lombroso, C. T. and Duffy, F. H. Brain electrical activity mapping in the epilepsies. In: H. Akimoto, H. Kazamatsuri, M. Seino and A. Ward (Eds.), Advances in Epileptology: Proceedings of XIIIth Epilepsy International Symposium. New York: Raven Press, 1982, 173–173.Google Scholar
  34. Lopes da Silva, F. H. Event-related potentials: Methodology and quantification. In: E. Niedermeyer and F. Lopes da Silva (Eds.), Electroencephalography Basic Principles, Clinical Applications and Related Fields (second edition) Baltimore-Munich: Urban and Schwarzenberg, 1987, 763–772.Google Scholar
  35. Maurer, K., Dierks, T. and Ihl, R. Topographic mapping of auditory evoked P300 in psychiatric disorders. In: G. Pfurtscheller and F. H. Lopes da Silva (Eds.), Functional Brain Imaging. Stuttgart: Hans Huber Publishers, 1988, 187–192.Google Scholar
  36. Maus, A. and Endresen, J. Misuse of computer-generated results. Med. Biol. Eng. Comput., 1979, 17: 126–129.PubMedGoogle Scholar
  37. Morihisa, J. M., Duffy, F. H. and Wyatt, R. J. Brain electrical activity mapping (BEAM) in schizophrenic patients. Arch. Gen. Psych., 1983, 40: 719–728.Google Scholar
  38. Morstyn, R., Duffy, F. H. and McCarley, R. W. Altered P300 topography in schizophrenia. Arch. Gen. Psychiat., 1983, 40: 729–734.PubMedGoogle Scholar
  39. Nagata, K., Tagawa, K., Hiroi, S., Nara, M., Shishido, F. and Uemura, K. Quantitative EEG and positron emission tomography in brain ischemia. In: G. Pfurtscheller and F. H. Lopes da Silva (Eds.), Functional Brain Imaging Stuttgart: Hans Huber Publishers, 1988, 239–250.Google Scholar
  40. Nuwer, M. and Jordan, S. The centrifugal effect and other spatial artifacts of topographic EEG mapping. J. Clin. Neurophysiol., 1987, 4: 321–326.PubMedGoogle Scholar
  41. Oken, B. S. and Chiappa. K. H. Statistical issues concerning computerized analysis of brainwave topography. Ann. Neurol., 1986, 19: 493–494.PubMedGoogle Scholar
  42. Oller, L. F. V. and Ortiz, T. Metodologia y aplicaciones clinical de los actividad (MAEC) eléctrica cerebral. Madrid: Editorial Garsi, 1988.Google Scholar
  43. Rappelsberger, P. and Petsche, H. Probability mapping: Power and coherence analyses of cognitive processes. Brain Topography, 1988, 1: 46–54.PubMedGoogle Scholar
  44. Rondot, P., Gaches, J. and Sebban, C. Cartographie E.E.G.: Methodologie et applications cliniques. Paris: Editions Médicales Frison-Roche, 1987.Google Scholar
  45. Rösler, F., and Manzey, D. Principal components and varimaxrotated components in event-related potential research: some remarks on their interpretation. Biol. Psychiat, 1981, 13, 3–26.Google Scholar
  46. Rüger, B. Das maximale Signifikanziniveau des Tests: "Lehne Ho ab, wenn k unter n gegebene Tests zur Ablehnung fuhren. Metrika, 1978, 25, 171–178.Google Scholar
  47. Saletu, B., Anderer, P., Kinsperger, K. and Grunberger, J. Topographic brain mapping of EEG in neuropsychopharmacology- Part I Clinical applications (Pharmaco EEG imaging). Meth. Find. Exptl. Clin. Pharmacol., 1987, 9: 385–408.Google Scholar
  48. Samson-Dollfus, D., Guieu, J.D.,, Gotman, J. and Etevenon, P. Statistics and Topography in Quantitative EEG. Amsterdam: Elsevier 1988.Google Scholar
  49. Santamaria, J. and Chiappa, K. The EEG of drowsiness in normal adults. Clin. Neurophysiol., 1987, 4, 327–382.PubMedGoogle Scholar
  50. Seal, H.L. Principal components. In: H.L. Seal (Ed.), Multivariate Statistical Analysis for Biologists, New York: John Wiley and sons, 1964, 101–122.Google Scholar
  51. Semlitsch, H.V., Anderer, P., Schuster, P. and Presslich, O. A solution for reliable and valid reduction of ocular artifacts, applied to the P300 ERP. Psychophysiology, 1986, 23, 695–703.PubMedGoogle Scholar
  52. Skalka, H. and Holman, J. Effect of pupillary dilatation in flash VER testing. Documenta Ophthalmologica, 1986, 63, 321–324.PubMedGoogle Scholar
  53. Tukey, J. W. The future of data analysis. Ann. Math. Statist., 1962, 33, 1–67.Google Scholar
  54. Tukey, J.W. Exploratory Data Analysis. Reading, MA: Addison-Wesley, 1977.Google Scholar
  55. Tukey, J.W. We need both exploratory and confirmatory. The Americal Statistician, 1980, 34, 23–25.Google Scholar
  56. Van Rotterdam, A. Limitations and difficulties in signal processing by means of the principal-components analysis. IEEE Trans. Biomed. Eng. BME-17, 1970, 268–269.Google Scholar
  57. Victor, N. Exploratory data analysis and clinical research. Meth. Inform. Med. 1982, 21, 53–54.PubMedGoogle Scholar
  58. Wastell, D.G. On the independence of P300 and the CNV: A short critique of the principal components analysis of Donchin et al. Biol. Psychiat., 1975, 9: 171–176.Google Scholar
  59. Wood, C.C. and McCarthy, G. Principal component analysis of event-related potentials: Simulation studies demonstrate misallocation of variance across components. Electroenceph. Clin. Neurophysiol., 1984, 59: 249–260.PubMedGoogle Scholar

Copyright information

© Human Sciences Press, Inc 1990

Authors and Affiliations

  • Frank H. Duffy
    • 1
  • Kenneth Jones
    • 2
  • Peter Bartels
    • 3
  • Marilyn Albert
    • 4
  • Gloria B. McAnulty
    • 5
  • Heidelise Als
    • 6
  1. 1.Harvard Medical School and The Children's HospitalBostonUSA
  2. 2.Social Research Brandeis UniversityWalthamUSA
  3. 3.Optical Sciences CenterUniversity of ArizonaTucsonUSA
  4. 4.Harvard Medical School and The Massachusetts General HospitalBostonUSA
  5. 5.Neurology Harvard Medical School and The Children's HospitalBostonUSA
  6. 6.Harvard Medical School and The Children's HospitalBostonUSA

Personalised recommendations