Computational Mathematics and Modeling

, Volume 7, Issue 1, pp 117–125 | Cite as

Reflection formulas and continuation of solutions of boundary-value problems

  • B. Yu. Sternin
  • V. E. Shatalov


Mathematical Modeling Computational Mathematic Industrial Mathematic Reflection Formula 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ph. Davis, The Schwarz Function and Its Applications, Carus Mathematical Monographs, MAA (1979).Google Scholar
  2. 2.
    P. Ebenfelt, Singularities Encountered by the Analytic Continuation of Solutions to Dirichlet's Problem, Research Report TRITA-MAT-1991-0047, Royal Inst. Technol., Stockholm (1991).Google Scholar
  3. 3.
    P. Garabedian, “Partial differential equations with more than two independent variables in the complex domain,” J. Math. Mech.,9, No. 2, 241–271 (1960).Google Scholar
  4. 4.
    B. Gustaffson, “On quadrature domains and an inverse problem in potential theory,” J. Analyse Math. (1994).Google Scholar
  5. 5.
    B. Gustaffson, On Quadrature Domains, Graviequivalence and Balayage, Preprint (1992).Google Scholar
  6. 6.
    J. Hansen and H. S. Shapiro, Functional Equations and Harmonic Extensions, Research Report TRITA-MAT-1992-0032, Royal Inst. Technol., Stockholm (1992).Google Scholar
  7. 7.
    D. Khavinson and H. S. Shapiro, The Schwarz Potential inR n and Cauchy's Problem for the Laplace Equation, Research Report TRITA-MAT-1989-36, Royal Inst. Technol., Stockholm (1989).Google Scholar
  8. 8.
    D. Khavinson and H. S. Shapiro, “Remarks on the reflection principle for harmonic functions,” J. Analyse Math.,54, 60–76 (1989).Google Scholar
  9. 9.
    A. G. Kyurkchan, B. Yu. Sternin, and V. E. Shatalov, “Singularities of continuations of solutions of Maxwell's equations,” Radiotekhnika i Elektronika,37, No. 5, 777–796 (1992).Google Scholar
  10. 10.
    H. Lewy, “On the reflection laws of second order differential equations in two independent variables,” Bull. AMS,65, 37–58 (1959).Google Scholar
  11. 11.
    T. V. Savina, “On reflection formula for elliptical equations of high order,” Mat. Zametki (1993).Google Scholar
  12. 12.
    T. V. Savina, B. Yu. Sternin, and V. E. Shatalov, “On the reflection law for Helmholtz equation,” Sov. Math. Dokl.,45, No. 1, 42–45 (1992).Google Scholar
  13. 13.
    H. A. Schwarz, “Uber die Integration der partiellen Differentialgleichung ( 2 u/∂x 2) + ( 2 u/∂y 2) = 0 unter vorgeschriebenen Grens- und Unstetigkeitsbedingungen,” Monat. Konigl. Akad. Wiss. Berlin, pp. 767–795 (1870).Google Scholar
  14. 14.
    B. Yu. Sternin and V. E. Shatalov, “Continuation of solutions of elliptic equations and localization of singularities,” Lect. Notes Math., Vol. 1520, 237–260 (1992).Google Scholar
  15. 15.
    B. Yu. Sternin and V. E. Shatalov, “On the continuation problem of solutions to elliptic equations,” Differ. Equations (trans. of Differentisal'nye Uravneniya), 144–153 (1992).Google Scholar
  16. 16.
    E. Study, “Einige elementare Bemerkungen uber den Prozess der analytischen Fortsetzung,” Math. Ann.63, 239–245 (1907).Google Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • B. Yu. Sternin
  • V. E. Shatalov

There are no affiliations available

Personalised recommendations