Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Formation of double and triple complexes of copper(II) with enkephalin and histidine

  • 27 Accesses

Abstract

Complex formation between copper(II) and pentapeptide enkephalin and histidine was studied at various pH values by fast-atom bombardment (FAB) and field-desorption (FD) mass spectrometry and ESR. It was shown that a triple complex, stable over a wide range of pH and detectable in the FD mass spectrum, is formed in the solutions with the components in an equimolar ratio.

This is a preview of subscription content, log in to check access.

Literature cited

  1. 1.

    B. Sarkar, “Transport of copper,” Metal Ions Biol. Syst.,12, 233–281 (1981)

  2. 2.

    J. E. Gairin, H. Mazarguil, P. Sharrock, et al., “5-Leucine and 5-methionine enkephalin-copper(II) complexation under physiological conditions,” Inorg. Chem.,21, No. 5, 1846–1854 (1982).

  3. 3.

    K. Burger, “Protonation and complexation of macromolecular polypeptides: Corticotropin fragments and basic trypsin inhibitor (Kunitz base),” Metal Ions Biol. Syst.,9, 213–250 (1979).

  4. 4.

    N. Ueyama, S. Ueno, M. Nakata, et al., “Synthesis of 2Fe—2S ferrodoxin model complexes of Cys-containing oligopeptides by reaction with Fe2S2 2+ ion or by sulfide incorporation,” Bull. Chem. Soc. Jpn.,57, No. 4, 984–988 (1984).

  5. 5.

    S. V. Zaitsev, N. V. Porodenko, and S. D. Varfolomeev, “The nature of cation-binding groups in the binding centers of [[3H]Tyr1, D-Ala2, D-Leu5]enkephalin,” Bioorg. Khim.,11, No. 2, 153–161 (1985).

  6. 6.

    V. A. Pokrovskii and V. V. Mosin, “Fast-atom bombardment in mass spectrometry: The method and its use,” Teor. Éksp. Khim.,23, No. 1, 62–78 (1987).

  7. 7.

    M. Barber, R. S. Bordoli, G. V. Garner, et al., “Fast-atom bombardment mass spectra of enkephalins,” Biochem. J.,197, No. 2, 401–404 (1981).

  8. 8.

    M. Barber, R. S. Bordoli, G. J. Elliott, et al., “Fast-atom bombardment mass spectrometry,” Anal. Chem.,54, No. 4, A645–A657 (1982).

  9. 9.

    Kh. D. Bekai and Kh. R. Shul'ten, “Field-desorption mass spectrometry: principles, technique, and application in bioorganic chemistry,” Bioorg. Khim.,3, No. 4, 437–466 (1977).

  10. 10.

    G. Formicka-Kozlowska, L. D. Pettit, I. Steel, et al., “A potentiometric and spectroscopic study of the proton and copper(II) complexes of methionine enkephalin and some related ligands,” J. Inorg. Biochem.,24, No. 4, 299–307 (1985).

  11. 11.

    C. Fenselau, D. J. Liberato, J. A. Yergey, et al., “A comparison of thermospray and fast-bombardment mass spectrometry as solution-dependent ionization techniques,” Anal. Chem.,56, No. 14, 2759–2762 (1984).

  12. 12.

    M. V. Ligon, “Mass spectrometric determination of dipeptides after formation of a surface-active derivative,” Anal. Chem.,58, No. 2, 485–487 (1986).

  13. 13.

    R. M. Caprioli, “Fast-atom bombardment mass spectrometry for determination of dissociation constants of weak acids in solution,” Anal. Chem.,55, 14 2387–2391 (1983).

  14. 14.

    R. A. W. Johnstone and I. A. S. Lewis, “Crown ether complexes of metallic cations investigated by fast-atom bombardment,” Int. J. Mass. Spectrom. Ion Phys.,46, 451–454 (1983).

  15. 15.

    H. Sigel and R. B. Martin, “Coordinating properties of the amide bond. Stability and structure of metal ion complexes of peptides and related ligands,” Chem. Rev.,82, No. 4, 385–426 (1982).

  16. 16.

    G. D. Tantsyrev and E. N. Nikolaev, “Two mechanisms of cluster formation in water during ion bombardment of an ice film,” Dokl. Akad. Nauk SSSR,206, No. 1, 151–154 (1972).

  17. 17.

    E. Clayton and A. J. Wakefield, “Fast-atom bombardment (FAB) mass spectrometry; mechanism of ionization,” J. Chem. Soc. Chem. Commun., No. 15, 969–970 (1984).

  18. 18.

    M. Barber, R. S. Bordoli, G. J. Elliott, et al., “Fast atom bombardment mass spectrometry (FABMS): a study of surface coverage effects in FABMS,” J. Chem. Soc. Faraday Trans. I,79, No. 5, 1249–1255 (1983).

  19. 19.

    R. L. Cerny, B. P. Sullivan, M. M. Bursey, et al., “Comparison of fast-atom bombardment and field-desorption mass spectrometry of coordination complexes,” Anal. Chem.,55, No. 12, 1954–1958 (1983).

  20. 20.

    G. Pelzer, E. De-Pauw, Dao-Viet-Dung, et al., “Oxidation-reduction processes occurring in secondary ion mass spectrometry and fast-atom bombardment of glycerol solutions,” J. Phys. Chem.,88, No. 21, 5065–5068 (1984).

Download references

Author information

Additional information

Translated from Teoreticheskaya i Éksperimental'naya Khimiya, Vol. 23, No. 5, pp. 634–641, September–October, 1987.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Yatsimirskii, K.B., Pokrovskii, V.A., Kol'chinskii, A.G. et al. Formation of double and triple complexes of copper(II) with enkephalin and histidine. Theor Exp Chem 23, 583–590 (1987). https://doi.org/10.1007/BF01128462

Download citation

Keywords

  • Copper
  • Mass Spectrometry
  • Mass Spectrum
  • Histidine
  • Complex Formation