Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Investigation of semi-implicit schemes for the solution of stiff systems of MHD equations

  • 39 Accesses

Abstract

An efficient semi-implicit method for integration of stiff systems of MHD equations is considered. A comparison is made of the numerical results obtained for the solution of the full linear system of MHD equations in cylindrical geometry using explicit and semi-implicit schemes.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Yu. N. Dnestrovskii, D. P. Kostomarov, and A. M. Popov, "Helical instability in plasma with distributed current," Zh. Tekh. Fiz.,42, No. 9, 1825–1838 (1972).

  2. 2.

    A. F. Danilov, Yu. N. Dnestrovskij, D. P. Kostomarov, and A. M. Popov, "Three-dimensional code for studying of MHD motion of tokamak plasma," Proc. 8th Europ. Conf. on Controlled Fusion and Plasma Physics, Vol. 1, Prague (1977), p. 48.

  3. 3.

    A. M. Popov and E. A. Shagirov, "MHD models for studying stability of internal modes in a tokamak," in: Mathematical Modeling of Kinetic and MHD Processes in Plasma [in Russian], Izd. MGU, Moscow (1979), pp. 55–78.

  4. 4.

    A. M. Popov, "Mathematical modeling of MHD instability in plasma," in: A. N. Tikhonov and A. A. Samarskii (eds.), Numerical Methods of Solution of Inverse Problems of Mathematical Physics [in Russian], Izd. MGU, Moscow (1988), pp. 167–171.

  5. 5.

    R. Grimm, R. Dewar, I. Manicam, and others, "Resistive instabilities in tokamak geometry," IAEA,3, 35–47 (1985).

  6. 6.

    A. F. Danilov, Yu. N. Dnestrovskij, D. P. Kostomarov, and A. M. Popov, PPCNFR Conf. Proc., vol. 1, Berchtesgaden (1976), pp. 591–603.

  7. 7.

    E. V. Il'ina, A. V. Shedorenko, and A. M. Popov, "Modeling of MHD instability of weakly dissipative tokamak plasma," Mat. Modelir.,2, No. 2, 86–97 (1990).

  8. 8.

    E. V. Andreeva, Yu. N. Dnestrovskii, and A. M. Popov, "Simulation of tearing modes in a tokamak with a noncircular cross section," Fiz. Plazmy,17, No. 4, 410–417 (1991).

  9. 9.

    L. A. Charlton, J. A. Holmes, and others, "Numerical calculations using the full MHD equations in toroidal geometry," J. Comput. Phys.,637, 107–129 (1986).

  10. 10.

    L. A. Charlton, J. A. Holmes, V. E. Lynch, and B. A. Carreras, "Compressible linear and nonlinear resistive MHD calculations in toroidal geometry," J. Comput. Phys.,86, 270–293 (1990).

  11. 11.

    Yu. N. Dnestrovskii, D. P. Kostomarov, V. V. Nefedov, and A. M. Popov, "Analysis of nonlinear evolution of resistive helical modes by method of projection on unstable manifold," Diff. Uravn.,26, No. 7, 1208–1216 (1990).

  12. 12.

    A. Y. Aydemir, J. C. Wiley, and D. V. Ross, "Toroidal studies of sawtooth oscillations in tokamaks," Phys. Fluids,B1(4, 774–787 (1989).

  13. 13.

    A. Y. Aydemir and D. C. Barnes, "An implicit algorithm for compressible three-dimensional magnetohydrodynamic calculations," J. Comput. Phys.,59, 108–119 (1985).

  14. 14.

    D. D. Schnack, D. C. Barnes, and others, "Semi-implicit magnetohydrodynamic calculations," J. Comput. Phys.,70, 330–354 (1987).

  15. 15.

    D. Schnack and J. Killeen, "Nonlinear, two-dimensional magnetohydrodynamic calculations," J. Comput. Phys.,35, 110–145 (1980).

  16. 16.

    D. D. Schnack, D. D. Baxter, and E. J. Caramana, "A pseudospectral algorithm for three-dimensional magnetohydrodynamic simulations," J. Comput. Phys.,55, 485–514 (1984).

  17. 17.

    A. A. Samarskii, Theory of Difference Schemes [in Russian], Nauka, Moscow (1977).

  18. 18.

    A. F. Danilov, D. P. Kostomarov, A. M. Popov, and Yu. N. Dnestrovskij, "Numerical simulation of MHD processes in tokamaks," Plasma Physics and Controlled Nuclear Fusion Research, Vol. 1, IAEA, Vienna (1977), pp. 591–603.

Download references

Additional information

Translated from Matematicheskoe Modelirovanie i Reshenie Obratnykh Zadach. Matematicheskoi Fiziki, pp. 208–214, 1993.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Paskonov, V.V., Popov, A.M. Investigation of semi-implicit schemes for the solution of stiff systems of MHD equations. Comput Math Model 6, 78–82 (1995). https://doi.org/10.1007/BF01128159

Download citation

Keywords

  • Mathematical Modeling
  • Linear System
  • Computational Mathematic
  • Industrial Mathematic
  • Cylindrical Geometry