Advertisement

Biology of Metals

, Volume 1, Issue 1, pp 18–25 | Cite as

Ferricrocin functions as the main intracellular iron-storage compound in mycelia ofNeurospora crassa

  • Berthold F. Matzanke
  • Eckard Bill
  • Alfred X. Trautwein
  • Günther Winkelmann
Original Articles

Summary

Neurospora crassa produces several structurally distinct siderophores: coprogen, ferricrocin, ferrichrome C and some minor unknown compounds. Under conditions of iron starvation, desferricoprogen is the major extracellular siderophore whereas desferriferricrocin and desferriferrichrome C are predominantly found intracellularly. Mössbauer spectroscopic analyses revealed that coprogen-bound iron is rapidly released after uptake in mycelia of the wild-typeN.crassa 74A. The major intracellular target of iron distribution is desferriferricrocin. No ferritin-like iron pools could be detected. Ferricrocin functions as the main intracellular iron-storage peptide in mycelia ofN. crassa. After uptake of ferricrocin in both the wild-typeN. crassa 74A and the siderophore-free mutantN. crassa arg-5 ota aga, surprisingly little metabolization (11%) could be observed. Since ferricrocin is the main iron-storage compound in spores ofN. crassa, we suggest that ferricrocin is stored in mycelia for inclusion into conidiospores.

Key words

Siderophores Ferricrocin Iron storage Sporulation In vivo Mössbauer spectroscopy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brambl S, Dunkle LD, Van Etten JL (1978) Nucleic acid and protein synthesis during fungal spore germination. In: Smith JE, Berry DR (eds) The filamentous fungi. Arnold, London, pp 94–118Google Scholar
  2. Brody S (1981) Genetic and biochemical studies on Neurospora conidia germination and formation. In: Turian G, Hohl HR (eds) The fungal spore: morphogenetic controls. Academic Press, New York, pp 605–626Google Scholar
  3. Chung TDY, Matzanke BF, Winkelmann G, Raymond KN (1986) Inhibitory effect of the partially resolved coordination isomers of chromic desferricoprogen on coprogen uptake inNeurospora crassa. J Bacteriol 165:283–287PubMedGoogle Scholar
  4. Dahlberg KR, Van Etten JL (1982) Physiology and biochemisty of fungal sporulation. Annu Rev Phytopathol 20:281–301Google Scholar
  5. Ernst JF, Winkelmann G (1977) Enzymatic release of iron from sideramines in fungi NADH:sideramine oxidoreductase inNeurospora crassa. Biochim Biophys Acta 500:27–41PubMedGoogle Scholar
  6. Horowitz NH, Charlang G, Horn G, Williams NP (1976) Isolation and identification of the conidial germination factor ofNeurospora crassa. J Bacteriol 127:135–140PubMedGoogle Scholar
  7. Huschka H, Naegeli HU, Leuenberger-Ryf H, Keller-Schierlein W, Winkelmann G (1985) Evidence for a common siderophore transport system but different siderophore receptors inNeurospora crassa. J Bacteriol 162:715–721PubMedGoogle Scholar
  8. Huschka H, Jalal MAF, Helm D van der, Winkelmann G (1986) Molecular recognition of siderophores in fungi: role of iron-surroundingN-acyl residues and the peptide backbone during membrane transport inNeurospora crassa. J Bacteriol 167:1020–1024PubMedGoogle Scholar
  9. Matzanke BF (1987) Mössbauer spectroscopy of microbial iron uptake and metabolism. In: Winkelmann G, Heim D van der, Neilands JB (eds) Iron transport in microbes, plants, and animals. Verlag Chemie, Weinheim, pp 251–284Google Scholar
  10. Matzanke B, Winkelmann G (1981) Siderophore iron transport followed by M6ssbauer spectroscopy. FEBS Lett 130:50–53Google Scholar
  11. Matzanke BF, Ecker DJ, Yang T-S, Huynh BH, Müller G, Raymond KN (1986a) Iron enterobactin uptake inEscherichia coli followed by Mössbauer spectroscopy. J Bacteriol 167:674–680PubMedGoogle Scholar
  12. Matzanke BF, Bill E, Winkelmann G, Trautwein AX (1986b) A57Fe Mössbauer study of iron assimilation inN. crassa mediated by siderophores. Hyperf Interact 29:1415–1418Google Scholar
  13. Matzanke BF, Bill E, Winkelmann G, Trautwein AX (1987a) Metabolization of57Fe-coprogen inN. crassa. An in vivo Mössbauer study. Eur J Biochem 162:643–650PubMedGoogle Scholar
  14. Matzanke BF, Bill E, Winkelmann G, Trautwein AX (1987b) A novel main component of microbial iron metabolism detected by in vivo Mössbauer spectroscopy. Rec Trav Chim Pays-Bas 106:258Google Scholar
  15. Matzanke BF, Bill E, Winkelmann G, Trautwein AX (1987c) Role of siderophores in iron storage compounds in spores ofN. crassa andA. ochraceus. J Bacteriol 169:5873–5876PubMedGoogle Scholar
  16. Matzanke BF, Müller-Matzanke G, Raymond KN (1988) Siderophore mediated iron transport; chemistry, biology and physical properties. In: Lever ABP, Gray HB (eds) Physical bio-inorganic chemistry series, vol IV. Addison-Wesley,Reading, MA (in press)Google Scholar
  17. Raymond KN, Miller GI, Matzanke BF (1984) Complexation of iron by siderophores. A review of their solution and structural chemistry and biological function. Top Curr Chem 123:49–102Google Scholar
  18. Tufano TP, Raymond KN (1981) Coordination chemistry of microbial iron compounds. 21. Kinetics and mechanism of iron exchange in hydroxamate siderophore complexes J Am Chem Soc 103:6617–6624Google Scholar
  19. Van Etten JL, Dahlberg KR, Russo GM (1981) Nucleic acids. In: Turian G, Hohl HR (eds) The fungal spore: morphogenetic controls. Academic Press, New York, pp 277–302Google Scholar
  20. Wong GB, Kappel MJ, Raymond KN, Matzanke B, Winkelmann G (1983) Coordination chemistry of microbial iron transport compounds. 24. Characterization of coprogen and ferricrocin, two ferric hydroxamate siderophores. J Am Chem Soc 105:810–815Google Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • Berthold F. Matzanke
    • 1
  • Eckard Bill
    • 2
  • Alfred X. Trautwein
    • 2
  • Günther Winkelmann
    • 1
  1. 1.Institut für Biologie I, Auf der Morgenstelle 1Universität TübingenTübingenGermany
  2. 2.Institut für PhysikMedizinische Universität LübeckLübeckGermany

Personalised recommendations