Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Iteration method in the problem of diffraction on a system of bodies

  • 19 Accesses

This is a preview of subscription content, log in to check access.

Literature Cited

  1. 1.

    K. Schwarzschild, Mathem. Ann.,55, No. 2, 177 (1902).

  2. 2.

    H. Henle, A. Maue, and K. Westpfal, Diffraction Theory [Russian translation], Mir, Moscow (1964).

  3. 3.

    E. I. Vasil'ev and L. V. Materikova, Radiotekhnika i Elektronika,16, No. 9, 1569–1577 (1971).

  4. 4.

    A. N. Tikhonov and A. A. Samarskii, Equations of Mathematical Physics [in Russian], Nauka, Moscow (1972).

  5. 5.

    R. Mitra and others, Computational Methods of Electrodynamics [Russian translation], Mir, Moscow (1977).

  6. 6.

    V. V. Voevodin and E. E. Tyrtyshnikov, Computations with Toeplitz Matrices [in Russian], Nauka, Moscow (1987).

Download references

Additional information

Translated from Metody Matematicheskogo Modelirovaniya i Vychislitel'noi Diagnostiki, pp. 220–229, Izd. Moskovskogo Universiteta, Moscow, 1990.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Starkova, L.K. Iteration method in the problem of diffraction on a system of bodies. Comput Math Model 3, 224–231 (1992). https://doi.org/10.1007/BF01127852

Download citation

Keywords

  • Mathematical Modeling
  • Computational Mathematic
  • Industrial Mathematic
  • Iteration Method