Theoretica chimica acta

, Volume 93, Issue 5, pp 281–301 | Cite as

The MIDI! basis set for quantum mechanical calculations of molecular geometries and partial charges

  • R. Evan Easton
  • David J. Giesen
  • Andrew Welch
  • Christopher J. Cramer
  • Donald G. Truhlar


We present a series of calculations designed to identify an economical basis set for geometry optimizations and partial charge calculations on medium-size molecules, including neutrals, cations, and anions, with special emphasis on functional groups that are important for biomolecules and drug design. A new combination of valence basis functions and polarization functions, called the MIDI! basis set, is identified as a good compromise of speed and accuracy, yielding excellent geometries and charge balances at a cost that is as affordable as possible for large molecules. The basis set is optimized for molecules containing H, C, N, O, F, P, S, and Cl. Although much smaller than the popular 6-31G* basis set, in direct comparisons it yields more accurate geometries and charges as judged by comparison to MP2/cc-pVDZ calculations.

Key words

Bond length Bond angle Atomic partial charges Ab initio d polarization functions 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Feller D, Davidson ER (1990) Rev Comp Chem 1:1Google Scholar
  2. 2.
    Hehre WJ, Radom L, Schleyer PvR, Pople JA (1986)Ab initio molecular orbital theory. John Wiley, New YorkGoogle Scholar
  3. 3.
    Dunning TH Jr (1989) J Chem Phys 90:1007. Woon DE, Dunning TH Jr (1993) J Chem Phys 98:1358Google Scholar
  4. 4.
    Del Bene JE, Aue DH, Shavitt I (1992) J Am Chem Soc 114:1631Google Scholar
  5. 5.
    Raghavachari K, Trucks GW, Pople JA, Head-Gordan M (1989) Chem Phys Lett 157:479Google Scholar
  6. 6.
    Corchado JC, Espinosa-Garcia J, Hu W-P, Rossi I, Truhlar DG (1995) J Phys Chem 99:687Google Scholar
  7. 7.
    Politzer P, Truhlar DG (eds) (1981), Chemical applications of atomic and molecular electrostatic potentials. Plenum, New YorkGoogle Scholar
  8. 8.
    Reed AE, Weinstock RB, Weinhold F (1985) J Chem Phys 83:735Google Scholar
  9. 9.
    Chirlian LE, Francl MM (1987) J Comput Chem 8:894Google Scholar
  10. 10.
    Burley SK, Petsko GA (1988) Adv Protein Chem 39:125Google Scholar
  11. 11.
    Breneman CM, Wiberg KB (1990) J Comput Chem 11:361Google Scholar
  12. 12.
    Merz KM (1992) J Comput Chem (1995) 13:749Google Scholar
  13. 13.
    Cramer CJ, Truhlar DG (1993) J Am Chem Soc 115:8810Google Scholar
  14. 14.
    Hehre WJ, Stewart RF, Pople JA (1969) J Chem Phys 51:2657Google Scholar
  15. 15.
    Hehre WJ, Ditchfield R, Stewart RF, Pople JA (1970) J Chem Phys 52:2769Google Scholar
  16. 16.
    Hehre WJ, Ditchfield R, Pople JA (1972) J Chem Phys 56:2257Google Scholar
  17. 17.
    Hariharan PC, Pople JA (1973) Theor Chim Acta 28:213Google Scholar
  18. 18.
    Collins JB, Schleyer PR, Binkley JS, Pople JA (1976) J Chem Phys 64:5142Google Scholar
  19. 19.
    Binkley JS, Pople JA, Hehre WJ (1980) J Am Chem Soc 102:939Google Scholar
  20. 20.
    Tatewaki H, Huzinaga S (1980) J Comput Chem 1:205Google Scholar
  21. 21.
    Huzinaga S, Andzelm J, Klobukowski M, Radzio-Andzelm E, Sakai Y, Tatewaki H (1984) In: Huzinaga S (ed) Gaussian basis sets for molecular calculations. Elsevier, AmsterdamGoogle Scholar
  22. 22.
    Pietro WJ, Francl MM, Hehre WJ, DeFrees DJ, Pople JA, Binkley JS (1982) J Amer Chem Soc 104:5039Google Scholar
  23. 23.
    Francl MM, Pietro WJ, Hehre WJ, Binkley JS, Gordon MS, DeFrees DJ, Pople JA (1982) J Chem Phys 77:3654Google Scholar
  24. 24.
    Gordon MS, Binkley JS, Pople JA, Pietro WJ, Hehre WJ (1983) J Am Chem Soc 104:2797Google Scholar
  25. 25.
    Stevens WJ, Basch H, Krauss M (1984) J Chem Phys 81:6026Google Scholar
  26. 26.
    Dunning TH Jr, Hay PJ (1977) In: Schaefer HF III (ed) Methods of electronic structure theory. Plenum, New York, p. 1Google Scholar
  27. 27.
    Pulay P, Fogarasi G, Pang F, Boggs JE (1979) J Am Chem Soc 101:2250Google Scholar
  28. 28.
    Frisch MJ, Trucks GW, Schlegel HB, Gill PMW, Johnson BG, Wong MW, Foresman JB, Robb MA, Head-Gordon M, Repolgle ES, Gomperts R, Andres JL, Raghavachari K, Binkley JS, Gonzalez C, Fox DJ, Defrees DJ, Baker J, Stewart JJP, Pople JA (1993) GAUSIAN92/DFT. Gaussian Inc., Pittsburgh, PAGoogle Scholar
  29. 29.
    Mulliken RS (1955) J Chem Phys 23:1833Google Scholar
  30. 30.
    Cramer CJ, Truhlar DG (1995) Rev Comp Chem 6:1Google Scholar
  31. 31.
    Cramer CJ, Truhlar DG (in press) In: Tapia O, Bertrán J (eds) Solvent effects and chemical reactivity. Kluwer, DordrechtGoogle Scholar
  32. 32.
    Storer JW, Giesen DJ, Cramer CJ, Truhlar DG (1995) J Computer-Aided Molec Des 9:87Google Scholar
  33. 33.
    Boggs JE, Niu Z (1985) J Comput Chem 6:46Google Scholar
  34. 34.
    Niu Z, Boggs JE (1984) J Mol Struct (Theochem) 109:381Google Scholar
  35. 35.
    Wong MW, Wiberg KB (1992) J Phys Chem 96:668Google Scholar
  36. 36.
    Šponer J, Hobza P (1994) J Mol Struct (Theochem) 304:35Google Scholar
  37. 37.
    Boggs JE, Cordell FR (1981) J Mol Struct (Theochem) 76:329Google Scholar
  38. 38.
    Frisch MJ, Pople JA, Binkley JS (1984) J Chem Phys 80:3265Google Scholar
  39. 39.
    Scuseria G, Schaefer HF III (1989) J Chem Phys 90:3269Google Scholar
  40. 40.
    Pople JA, Head-Gordon M, Fox DJ, Raghavachari K, Curtiss LA (1989) J Chem Phys 90:5622Google Scholar
  41. 41.
    Alkorta I (1994) Theor Chim Acta 89:1Google Scholar
  42. 42.
    Gilheany DG (1994) Chem Rev 94:1339Google Scholar
  43. 43.
    Tatewaki H, Huzinaga S (1979) J Chem Phys 71:4339Google Scholar
  44. 44.
    Tatewaki H, Huzinaga S (1980) J Chem Phys 72:399Google Scholar
  45. 45.
    Sakai Y, Tatewaki H, Huzinaga S (1982) J Comput Chem 3:6Google Scholar
  46. 46.
    Sargent AL, Hall MB (1991) J Comput Chem 12:923Google Scholar
  47. 47.
    Sakai Y, Tatewaki H, Huzinaga S (1981) J Comput Chem 2:100Google Scholar
  48. 48.
    McMurchie L, Elbert S, Langhoff S, Davidson ER, Feller D, Cave R, Rawlings D, Frey R, Daasch R, Nitchie L, Phillips P, Iberle K, Jackels C (1984) MELDF-X program suite. Indiana University, Bloomington, INGoogle Scholar
  49. 49.
    Feller D, Schuchardt K, Jones D (1995) Extensible computational chemistry environment basis set database, Version 1.0, Molecular Science Computing Facility, Environmental and Molecular Sciences Laboratory ( and Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • R. Evan Easton
    • 1
  • David J. Giesen
    • 1
  • Andrew Welch
    • 1
  • Christopher J. Cramer
    • 1
  • Donald G. Truhlar
    • 1
  1. 1.Department of Chemistry and Supercomputer InstituteUniversity of MinnesotaMinneapolisUSA

Personalised recommendations