Advertisement

Theoretica chimica acta

, Volume 79, Issue 2, pp 141–152 | Cite as

Polarization correction to the electrostatic potential at the CNDO and theab initio level. Influence of the basis set expansion

  • D. Dehareng
  • G. Dive
  • J. M. Ghuysen
Article

Summary

The influence of the basis set on the electrostatic potential corrected for polarization has been studied for H2S, CH3SH and COHCH2SH. The position and deepness of the minima and the height of the barrier between symmetric minima is discussed at both the deorthogonalized CNDO/2 andab initio levels within STO-3G, 3-21G, 4-31G, 6-31G and 6-311G basis sets. The calculation of the electrostatic potential and corrected one using CNDO deorthogonalized coefficients including 3d orbitals has been applied at the first time on sulfur-containing molecules. The influence of polarization and diffuse functions has also been analysed and the incidence of the polarization correction on the relative proton affinity in NH2(CH2)3NHCH3 and in the adenine molecule has been investigated at the CNDO andab initio levels. At both levels, the relative proton affinity of several basic sites in the same molecule can be qualitatively expressed without inclusion of the polarization correction except in the case of substituted amines.

Key words

Polarization corrected potential Basis set expansion CNDO approximation Proton affinity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Goursot A, Fajula F, Daul C, Weber J (1988) J Phys Chem 92:4456–4461Google Scholar
  2. 2.
    Murray J, Politzer P (1988) Chem Phys Lett 152:364–370Google Scholar
  3. 3.
    Truhlar DG (1981) In: Politzer P, Truhlar DG (eds) Chemical applications of atomic and molecular electrostatic potentials. Plenum Press, New YorkGoogle Scholar
  4. 4.
    Weinstein H, Osman R, Green JP, Topiol S (1981) In: Politzer P, Truhlar DG (eds) Chemical applications of atomic and molecular electrostatic potentials. Plenum Press, New YorkGoogle Scholar
  5. 5.
    Daudel R, Le Rouzo H, Cimiraglia R, Tomasi J (1978) Int J Quant Chem 13:537–552Google Scholar
  6. 6.
    Mó O, Yánez M (1978) Theor Chim Acta 47:263–273Google Scholar
  7. 7.
    Douglass CH Jr., Weil DA, Charlier PA, Eades RA, Truhlar DG, Dixon DA (1981) In: Politzer P, Truhlar DG (eds) Chemical applications of atomic and molecular electrostatic potentials. Plenum Press, New YorkGoogle Scholar
  8. 8.
    Truhlar DG, Van Catledge FA (1978) J Chem Phys 69:3575–3578Google Scholar
  9. 9.
    Umeyama H, Morokuma K (1976) J Amer Chem Soc 98:4400–4404Google Scholar
  10. 10.
    J. Tomasi (1981) In: Politzer P, Truhlar DG (eds) Chemical applications of atomic and molecular electrostatic potentials. Plenum Press, New YorkGoogle Scholar
  11. 11.
    Bonaccorsi R, Pullman A, Scrocco E, Tomasi J (1972) Theor Chim Acta 24:51–60Google Scholar
  12. 12.
    Bonaccorsi R, Scrocco E, Tomasi J, Pullman A (1975) Theor Chim Acta 36:339–344Google Scholar
  13. 13.
    Bartlett RJ, Weinstein H (1975) Chem Phys Lett 30:441–447Google Scholar
  14. 14.
    Clementi E, Andre JM, Andre MCI, Klint D, Hahn D (1969) Acta Phys Acad Scient Hungar 27:493–521Google Scholar
  15. 15.
    Miller-Francl M, Program MEPHISTO, Department of Chemistry, Princeton University, Princeton, NJ 08544. QCPE 490, Quantum Chemistry Program Exchange, Department of Chemistry, Indiana University, Bloomington, IN 47405, USAGoogle Scholar
  16. 16.
    Allen LC (1960) Phys Rev 118:167–173Google Scholar
  17. 17.
    Program GAUSS76, QCPE 368, Quantum Chemistry Program Exchange, Department of Chemistry, Indiana University, Bloomington, IN 47405, USAGoogle Scholar
  18. 18.
    Dive G (1979) Thèse de doctorat (University of Liège)Google Scholar
  19. 19.
    Leroy G, Louterman-Leloup G (1975) J Mol Struct 28:33–37Google Scholar
  20. 20.
    Giessner-Prettre C, Pullman A (1972) Theor Chim Acta 25:83–88Google Scholar
  21. 21.
    Pople JA, Beveridge DL (1970) In: Approximate molecular orbital theory, McGraw-Hill, New YorkGoogle Scholar
  22. 22.
    Petrongolo C, Tomasi J (1973) Chem Phys Lett 20:201–206.Google Scholar
  23. 23.
    Dewar MJS, Zoebisch EG, Healy EF, Stewart JJP (1985) J Amer Chem Soc 107:3902–3909Google Scholar
  24. 24.
    Luque FJ, Illas F, Orozco M (1990) J Comp Chem 11:416–430Google Scholar
  25. 25.
    Hehre WJ, Stewart RF, Pople JA (1969) J Chem Phys 51:2657–2664Google Scholar
  26. 26.
    Collins JB, von R Shleyer P, Binkley JS, Pople JA (1976) J Chem Phys 64:5142–5151Google Scholar
  27. 27.
    Clark T, Chandrasekhar J, Spitznagel GW, von R Shleyer P (1983) J Comp Chem 4:294–301Google Scholar
  28. 28.
    Binkley JS, Pople JA, Hehre WJ (1980) J Amer Chem Soc 102:939–947Google Scholar
  29. 29.
    Gordon MS, Blinkley JS, Pople JA, Pietro WJ, Hehre WJ (1982) J Amer Chem Soc 104:2797–2803Google Scholar
  30. 30.
    Pietro WJ, Francl MM, Hehre WJ, Defrees DJ, Pople JA, Binkley JS (1982) J Amer Chem Soc 104:5039–5048Google Scholar
  31. 31.
    Frisch MJ, Pople JA, Binkley JS (1984) J Chem Phys 80:3265–3269Google Scholar
  32. 32.
    Hehre WJ, Ditchfield R, Pople JA (1972) J Chem Phys 56:2257–2261Google Scholar
  33. 33.
    Hariharan PC, Pople JA (1973) Theor Chim Acta 28:213–222Google Scholar
  34. 34.
    Gordon MS (1980) Chem Phys Lett 76:163–168Google Scholar
  35. 35.
    Krishnan R, Binkley JS, Seeger R, Pople JA (1980) J Chem Phys 72:650–654Google Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • D. Dehareng
    • 1
  • G. Dive
    • 1
  • J. M. Ghuysen
    • 1
  1. 1.Service de MicrobiologieUniversité de Liège, Institute de Chimie, B6Sart Tilman (Liège 1)Belgium

Personalised recommendations