Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

On plane defects in nematic liquid crystals with variable degree of orientation

  • 55 Accesses

  • 3 Citations

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Ericksen, J. L.: Liquid crystals with variable degree of orientation, Arch. Rational Mech. Anal.113 (1991) 97–120

  2. 2.

    Maddocks, J.: A model for disclinations in nematic liquid crystals, in Theory and applications of liquid crystals (J. L. Ericksen and D. Kinderlehrer Eds.), IMA Volumes in Mathematics and Applications, 5 (1987) 255–270, Springer-Verlag, Berlin etc

  3. 3.

    Lin, F.-H.: Nonlinear theory of defects in nematic liquid crystals; phase transition and flow phenomena, Comm. Pure Appl. Math.,42, (1989) 789–814

  4. 4.

    Lin, F.-H.: On nematic liquid crystal with variable degree of orientation, to appear in Comm. Pure Appl. Math. (1991).

  5. 5.

    Virga, E. G.: Defects in nematic liquid crystals with variable degree of orientation, inNematics, J.-M. Coron, J.-M. Ghidaglia and F. Hélein Eds., Kluwer Academic Publishers, Dordrecht,etc. (1991), pp. 371–390

  6. 6.

    Brezis, H.; Coron, J.-M. and Lieb, E.: Harmonic maps with defects, Comm. Math. Physics,107 (1986) 649–705

  7. 7.

    Cladis, P. E. and Kléman, M.: Non-singular disclinations of strengthS=+1 in nematics, J. Phys (Paris) 33 (1972) 591–598

  8. 8.

    de Gennes, P. G.: Phenomenology of short-range-order effects in the isotropic phase of nematic materials. Phys. Lett.30 A (1969) 454–455

  9. 9.

    Fan, C.: Disclination lines in liquid crystals, Phys. Lett.34 A (1972) 335–336

  10. 10.

    Fan, C. and Stephen, M. J.: Isotropic-nematic phase transitions in liquid crystals, Phys. Rev. Lett.25 (1970) 500–503

  11. 11.

    Mizel, V.; Roccato, D. and Virga, E. G.: A variational problem for nematic liquid crystals with variable degree of orientation, to appear in Arch. Rational Mech. Anal. (1991)

  12. 12.

    Ambrosio, L. and Virga, E. G.: A boundary-value problem for nematic liquid crystals with a variable degree of orientation. Arch. Rational Mech. Anal.114 (1991) 335–347

  13. 13.

    Goossens, W. J. A.: Bulk, interfacial and anchoring energies of liquid crystals, Mol. Cryst. Liq. Cryst.,124 (1985) 305–331

  14. 14.

    Ambrosio, L.: Existence of minimal energy configurations of nematic liquid crystals with variable degree of orientation, Manuscripta Math.68 (1990) 215–228

  15. 15.

    Ambrosio, L.: Regularity of solutions of a degenerate elliptic variational problem, Manuscripta Math.68 (1990) 309–326

  16. 16.

    Hardt, R.; Kinderlehrer, D. and Lin, F.-H.: Existence and partial regularity of static liquid crystals configurations. Comm. Math. Phys.105 (1986) 347–370

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Roccato, D., Virga, E.G. On plane defects in nematic liquid crystals with variable degree of orientation. Continuum Mech. Thermodyn 4, 121–136 (1992). https://doi.org/10.1007/BF01125694

Download citation

Keywords

  • Liquid Crystal
  • Variable Degree
  • Nematic Liquid Crystal
  • Plane Defect