Advertisement

Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Uncoupling and isotope effects in γ-butyrobetaine hydroxylation

  • 6 Accesses

Abstract

Replacement of unlabeled γ-butyrobetaine with γ-[2,3,4-2H6]butyrobetaine has a profound effect on the stoichiometry between decarboxylation of 2-oxoglutarate and hydroxylation in the reaction catalyzed by human γ -butyrobetaine hydroxylase. The ratios between decarboxylation and hydroxylation are 1.16 with Unlabeled and 7.48 with deuterated γ-butyrobetaine as substrate. From these ratios an internal isotope effect of 41 has been calculated. DV in the overall reaction measured as 2- oxoglutarate decarboxylation is 2.5 and DV/K is 1.0. For γ-butyrobetaine hydroxylase fromPseudomonas sp. AK 1, 2-oxoglutarate decarboxylation exceeds hydroxylation with 10% when deuterated γ-butyrobetaine is used. No excess was found with unlabeled substrate and no internal isotope effect could be calculated. DV for the bacterial enzyme is 6.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Lindstedt G & Lindstedt S (1970) J. Biol. Chem.245, 4187–4192.

  2. 2.

    Lindstedt G (1967) Biochemistry6, 1271–1282.

  3. 3.

    Englard S, Horwitz LJ & Tugenhaft Mills J. (1978) J. Lip. Res.19, 1057–1063.

  4. 4.

    Kondo A, Blanchard JS & Englard S (1981) Arch. Biochem. Biophys.212, 338–346.

  5. 5.

    Blanchard JS & Englard S (1983) Biochemistry22, 5922–5929.

  6. 6.

    Hutton JJ, Tappel AL & Udenfriend S (1966) Anal. Biochem.16, 384–394.

  7. 7.

    Risteli J, Tryggvason K & Kivirkko KI (1978) Anal. Biochem.84, 423–431.

  8. 8.

    Miller RL (1972) Anal. Biochem.45, 202–210.

  9. 9.

    Holme E (1982) Biochem. Biophys. Acta707, 259–266.

  10. 10.

    Holme E (1975) Biochemistry14, 4999–5003.

  11. 11.

    Myllylä R, Tuderman L & Kivirikko KI (1977) Eur. J. Biochem.80, 349–357.

  12. 12.

    Puistola U, Turpeenniemi-Hujanen TM, Myllylä R & Kivirikko KI (1980) Biochim. Biophys. Acta611, 40–50.

  13. 13.

    Hamilton GA (1971) Prog. Bioorg. Chem.1, 83–157.

  14. 14.

    Siegel B (1979) Prog. Bioorg. Chem.8, 219–226.

  15. 15.

    Jefford CW & Cadby PA (1981) Fortschr. Chem. Org. Naturprod.40, 191–265.

  16. 16.

    Holme E (1982) Dissertation, Gothenburg

  17. 17.

    Hanauske-Abel HM & Günzler V (1982) J. Theor. Biol.94, 421–455.

  18. 18.

    Klinman JP (1978) Adv. Enzymol.46, 415–494.

  19. 19.

    Northrop DB (1981) Ann. Rev. Biochem.50, 103–131.

  20. 20.

    Abbott MT & Udenfriend S (1974) in: Molecular Mechanism of Oxygen Activation (Hayaishi O, ed) pp 167–214, Academic Press, New York.

  21. 21.

    Counts DF, Cardinale GJ & Udenfriend S (1978) Proc. Natl. Acad. Sci. USA75, 2145–2149.

  22. 22.

    Rao NV & Adams E (1978) J. Biol. Chem.253, 6327–6330.

  23. 23.

    Holme E, Lindstedt G & Lindstedt S (1979) Acta Chem. Scand.B33, 621–622.

  24. 24.

    Hsu C-A, Saewert MD, Polsinelli Jr LF & Abbot MT (1981) J. Biol. Chem.256, 6098–6101.

  25. 25.

    Holme E & Lindstedt S (1982) Biochim. Biophys. Acta704, 278–283.

  26. 26.

    Holme E, Lindstedt S & Nordin I (1982) Biochem. Biophys. Res. Commun.107, 518–524.

  27. 27.

    Lindstedt G, Lindstedt S, Midtvedt T & Tofft M (1967) Biochemistry6, 1262–1270.

  28. 28.

    Lindstedt G & Lindstedt S (1965) in: Recent Research on Carnitine (Wolf G, ed), pp 11–21, MIT Press, Mass.

  29. 29.

    Lindstedt G, Lindstedt S and Nordin I (1982) Scand. J. Clin. Lab. Invest.42, 477–485.

  30. 30.

    Lindstedt G, Lindstedt S & Nordin I (1977) Biochemistry16, 2181–2188.

  31. 31.

    Lindstedt G, Lindstedt S & Nordin I (1980) in: Carnitine Biosynthesis, Metabolism and Functions (Frenkel RA & McGarry JD, eds), pp 45–66, Academic Press, New York.

  32. 32.

    Lindstedt G, Lindstedt S & Tofft M (1970) Biochemistry9, 4336–4342.

  33. 33.

    McGarry JD & Foster DW (1976) J. Lip. Res.17, 277–281.

  34. 34.

    Cederblad G & Lindstedt S (1972) Clin. Chim. Acta37, 235–243.

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Holme, E., Lindstedt, S. & Nordin, I. Uncoupling and isotope effects in γ-butyrobetaine hydroxylation. Biosci Rep 4, 433–440 (1984). https://doi.org/10.1007/BF01122509

Download citation

Keywords

  • Isotope Effect
  • Bacterial Enzyme
  • Unlabeled Substrate
  • Internal Isotope
  • Butyrobetaine Hydroxylase