Advertisement

Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Convergence property of multireference many-body perturbation theory analyzed by the use of a norm of effective Hamiltonian

Summary

It is proposed to use a norm of anth order effective Hamiltonian, for analyzing the convergence property of the multireference many-body perturbation theory (MR-MBPT). The utilization of the norm allows us to employ only (1) asingle number for all the states that we are interested in, and (2) values which decreases from thepositive side to zero as the ordern of the perturbation increases. This characteristic features are in contrast to those in the usually used scheme whereseveral numbers, namely, the eigenvalues of the target states, should be used and they mayoscillate around exact eigenvalues. The present method has been applied to MR-MBPT calculations of the (H2)2, CH2, and LiH molecules based on the multireference versions of Rayleigh-Schrödinger PT, Kirtman-Certain-Hirschfelder PT, and the canonical Van Vleck PT; and following features are found: (1) the above three versions of the perturbation theories have essentially the same convergence property judged from the lowering of the norm; (2) the lower order truncation of the perturbation series gives reasonable solutions; (3) the norm decreases irrespective of the perturbation expansion being convergent or divergent for the first several orders (up to about the sixth order).

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Brueckner KA (1955) Phys Rev 97:1353; (1955) Phys Rev 100:36

  2. 2.

    Goldstone J (1957) Proc R Soc (London) Ser A 239:267

  3. 3.

    Kelly HP (1969) Adv Chem Phys 14:129

  4. 4.

    Brandow BH (1967) Rev Mod Phys 39:771

  5. 5.

    Kvasnička V, Hubač I (1974) J Chem Phys 60:4483

  6. 6.

    Kvasniča V, Holubec A. Hubač I (1974) Chem Phys Lett 24:361

  7. 7.

    Lindgren I (1978) Int J Quantum Chem, Quantum Chem Symp 12:33

  8. 8.

    Hose G, Kaldor U (1979) J Phys B12:3827

  9. 9.

    Shavitt I, Redmon LT (1981) J Chem Phys 73:5711

  10. 10.

    Bartlett RJ (1981) Ann Rev Phys Chem 32:359

  11. 11.

    Redmon LT, Bartlett RJ (1982) J Chem Phys 76:1938

  12. 12.

    Kutzelnigg W (1982) J Chem Phys 77:3081; Kutzelnigg W, Koch S (1983) J Chem Phys 79:4315; Kutzelnigg W (1984) J Chem Phys 80:822

  13. 13.

    Frisch MJ, Head-Gordon M, Trucks GW, Foreman JB, Schlegel HB, Raghavachari K, Robb M, Binkley JS, Gonzalez C, Defrees DJ, Fox DJ, Whiteside RA, Seeger R, Melius CF, Baker J, Martin RL, Kahn LR, Stewart JJP, Topiol S, Pople JA, GAUSSIAN 90, Gaussian Inc, Pittsburgh, PA

  14. 14.

    Knowles PJ, Somasundram K, Handy NC, Hirao K (1985) Chem Phys Lett 113:8

  15. 15.

    Handy NC, Knowles PJ, Somasundram K (1985) Theor Chim Acta 68:87

  16. 16.

    Hose G (1986) J Chem Phys 84:4505

  17. 17.

    Zarrabian S, Paldus J (1990) Int J Quantum Chem 38:761

  18. 18.

    Zarrabian S, Laidig WD, Bartlett RJ (1990) Phys Rev A41:4711

  19. 19.

    Kirtman B (1968) J Chem Phys 49:3890

  20. 20.

    Certain PR, Hirschfelder JO (1970) J Chem Phys 52:5977; (1970) J Chem Phys 53:2992

  21. 21.

    Hirschfelder JO (1978) Chem Phys Lett 54:1

  22. 22.

    Primas H (1961) Helv Phys Acta 34:331; Primas H (1963) Rev Mod Phys 35:710

  23. 23.

    Jankowski K, Paldus J (1980) Int J Quantum Chem 18:1243

  24. 24.

    Tatewaki H, Huzinaga S (1980) J Comput Chem 1:205

  25. 25.

    Epstein PS (1926) Phys Rev 28:695; Nesbet RD (1955) Proc Roy Soc (London) A230:312

  26. 26.

    Møller C, Plesset S (1934) Phys Rev 46:618

  27. 27.

    Kaldor U (1973) Phys Rev A7:427

  28. 28.

    Salomonson S, Lindgren I, Martensson AM (1980) Phys Scr 21:1351

  29. 29.

    COLOMBUS, the graphical unitary group approach CI by I. Shavitt, IMS Computer Center Library Program No. 0444. The programs have been adapted for IBM by F. Brown and for the IMS HITAC by I. Shavitt. Other changes and additions have been made by P. Laidig, B. Saxe, F. Brown and I. Shavitt, and the registration on IMS by S. Obara and S. Yamamoto. COLUMBUS contains Ohio state SCF/CI programs based on the R. M. Pitzer integrals/SCF programs and the Berkeley (B.R. Brooks and H. F. Schaefer) graphical unitary group approach CI programs

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Nakano, H., Obara, S. Convergence property of multireference many-body perturbation theory analyzed by the use of a norm of effective Hamiltonian. Theoret. Chim. Acta 86, 369–377 (1993). https://doi.org/10.1007/BF01122429

Download citation

Key words

  • Convergence property
  • Perturbation
  • Multireference
  • Quasidegenerate
  • Effective Hamiltonian