Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

On direct and converse theorems in the theory of weighted polynomial approximation

This is a preview of subscription content, log in to check access.

Literature

  1. 1.

    Freud, G.: On weighted polynomial approximation by polynomials on the real line [Russian]. Doklady Akad. Nauk SSSR191, 293–294 (1970).

  2. 2.

    Freud, G.: On a Markov-type inequality, [Russian]. Doklady Akad. Nauk SSSR197, 790–793 (1971).

  3. 3.

    Freud, G.: On polynomial approximation with the weight\(e^{ - x^2 /2}\) [Russian] Doklady Akad. Nauk. SSSR, in print.

  4. 4.

    Freud, G.: On two polynomial inequalities, I. Acta Math. Acad. Sci. Hung.22, 109–116 (1971).

  5. 5.

    Freud, G.: On two polynomial inequalities, II. Acta Math. Acad. Sci. Hung., in print.

  6. 6.

    Freud, G.: A contribution to the problem of weighted polynomial approximation ISNM vol. 20. “Linear operators and approximation theory”, Conference report, Oberwolfach 1970. Editors: P.L. Butzer J.P. Kahane and B. Sz.-Nagy. Basel: Birkhäuser Verl. 1972.

  7. 7.

    Freud, G., Popov, V.: On approximation by spline functions. Proceedings of the conference on Constructive Theory of functions (Budapest, 1969). Editors: G. Alexits and S. B. Steckin. Budapest: Akadémia Kiadó 1972.

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Freud, G. On direct and converse theorems in the theory of weighted polynomial approximation. Math Z 126, 123–134 (1972). https://doi.org/10.1007/BF01122319

Download citation

Keywords

  • Polynomial Approximation
  • Converse Theorem
  • Weighted Polynomial Approximation