Advertisement

Journal of Soviet Mathematics

, Volume 35, Issue 3, pp 2545–2550 | Cite as

Refinement of the upper bound of the constant in the central limit theorem

  • I. S. Shiganov
Article

Keywords

Limit Theorem Central Limit Central Limit Theorem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    C.-G. Esseen, “On the Liapounoff limit of error in the theory of probability,” Ark. Mat. Astr. Fys.,28A, 1–19 (1942).Google Scholar
  2. 2.
    C.-G. Esseen, “Fourier analysis of distribution functions. A mathematical study of the Laplace-Gaussian law,” Acta Math.,77, 1–125 (1945).Google Scholar
  3. 3.
    A. C. Berry, “The accuracy of the Gaussian approximation to the sum of independent variates,” Trans. Am. Math. Soc.,49, No. 1, 122–136 (1941).Google Scholar
  4. 4.
    C. G. Esseen, “A moment inequality with an application to the central limit theorem,” Skand. Aktuarietidskr.,39, 160–170 (1956).Google Scholar
  5. 5.
    K. Takano, “A remark to a result of A. C. Berry,” Res. Mem. Inst. Math.,9, No. 6, 4.08–4.15 (1951).Google Scholar
  6. 6.
    H. Bergström, “On the central limit theorem in the case of not equally distributed random variables,” Skand. Aktuarietidskr.,33, 37–62 (1949).Google Scholar
  7. 7.
    V. M. Zolotarev, “A sharpening of the inequality of Berry-Esseen,” Z. Wahrscheinlichkeitstheorie Verw. Gebiete,8, 332–342 (1967).Google Scholar
  8. 8.
    P. van Beek, Fourier-analytische Methoden zur Verscharfung der Berry-Esseen Schranke. Doctoral dissertation, Friedrich Wilhelms Universitat, Bonn (1971).Google Scholar
  9. 9.
    P. van Beek, “An application of Fourier methods to the problem of sharpening the Berry-Esseen inequality,” Z. Wahrscheinlichkeitstheorie Verw. Gebiete,13, 187–196 (1972).Google Scholar
  10. 10.
    R. Fletcher and C. M. Reeves, “Function minimization by conjugate gradients,” Computer J.,7, No. 2, 149–154 (1964).Google Scholar
  11. 11.
    I. S. Shiganov, “On the sharpening of the absolute constant estimate in the central limit theorem,” in: Third Internat. Vilnius Conf. on Probab. Theory and Math. Statist. Abstracts of Communications. Vol. 3, Inst. Mat. Kibern., Akad. Nauk LitSSR, Vilnius (1981), pp. 312–313.Google Scholar
  12. 12.
    A. N. Kolmogorov, “Some work of recent years in the area of limit theorems of probability theory,” Vestn. Mosk. Gos. Univ.,10, 29–38 (1953).Google Scholar
  13. 13.
    V. M. Zolotarev, “An absolute estimate of the remainder in the central limit theorem,” Teor. Veroyatn. Primen.,11, No. 1, 108–119 (1966).Google Scholar
  14. 14.
    V. M. Zolotarev, “Some inequalities in probability theory and their application to the sharpening of Lyapunov's theorem,” Dokl. Akad. Nauk SSSR,177, No. 3, 501–504 (1967).Google Scholar
  15. 15.
    V. M. Zolotarev, “The investigation of the distributions of sums of independent random variables and of processes with independent increments,” Doctoral Dissertation, Mat. Inst. Akad. Nauk, Moscow (1966).Google Scholar

Copyright information

© Plenum Publishing Corporation 1986

Authors and Affiliations

  • I. S. Shiganov

There are no affiliations available

Personalised recommendations