Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Effect of nonstationary Ni+ irradiation regimes on the formation of voids in nickel

  • 18 Accesses

  • 2 Citations

This is a preview of subscription content, log in to check access.

Literature Cited

  1. 1.

    V. N. Bykov et al., Fiz. Tverd. Tela,15, No. 3, 910 (1973).

  2. 2.

    J. Delaplace, N. Azam, and N. Le Naour, J. Nucl. Mater.,47, No. 3, 278 (1973).

  3. 3.

    Yu. V. Konobeev and V. A. Pechenkin, Problems in Atomic Science and Technology. Ser. Physics of Radiation Damage and Radiation Materials Technology [in Russian], No. 1(6)), 3 (1978).

  4. 4.

    A. I. Bondarenko and Yu. V. Konobeev, Rad. Effects,29, No. 1, 47 (1976).

  5. 5.

    J. Evans, Nature,229, 403 (1971).

  6. 6.

    J. Brimhall and G. Kulcinski, Rad. Effects,20, 25 (1973).

  7. 7.

    Yu. V. Konobeev, in: Proceedings of the Conference on Reactor Materials Technology [in Russian], Vol. 1, Izd. TsNIIIatominform (1978), p. 296.

  8. 8.

    M. Elshby and L. Brown, Direct Methods for Studying Defects in Crystals [Russian translation], Mir, Moscow (1965).

  9. 9.

    J. Christian, Theory of Phase Transformations in Metals and Alloys [Russian translation], Mir, Moscow (1978).

Download references

Additional information

Translated from Atomnaya Énergiya, Vol. 50, No. 4, pp. 272–274, April, 1981.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lebedev, S.Y., Panin, S.D., Rudnev, S.I. et al. Effect of nonstationary Ni+ irradiation regimes on the formation of voids in nickel. At Energy 50, 251–253 (1981). https://doi.org/10.1007/BF01121118

Download citation

Keywords

  • Nickel
  • Irradiation Regime