Journal of Materials Science

, Volume 27, Issue 21, pp 5713–5719 | Cite as

Dielectric properties and microstructural behaviour of B-site calcium-doped barium titanate ceramics

  • J. G. Park
  • T. S. Oh
  • Y. H. Kim


Dielectric properties and microstructural behaviour of Ba1−xSrxTi1−yCayO3−y ceramics, where strontium and calcium were doped on the barium and titanium sites, respectively, within the range 0⩽x⩽0.24 and 0⩽y⩽0.05, were investigated. Calcium addition decreased the tetragonality,c/a, increased the unit cell volume, and lowered the Curie temperature, which were all attributed to the occupancy of Ca2+ ions on titanium sites. When sintered at a low oxygen partial pressure of 10−9 MPa, a resistivity higher than 1011 ω cm was maintained for the formulations containing B-site calcium substitution more than 0.5 mol %. With increasing the amount of calcium addition, the Curie peak was depressed and completely broadened for the compositions with calcium addition more than 3 mol %, where the average grain size was smaller than 1 μm. Co-firing with nickel electrodes in a reducing atmosphere also depressed the Curie peak and inhibited the grain growth due to the diffusion of nickel into the dielectrics.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Takamizawa, K. Utsumi, M. Yonezawa andT. Ohno,IEEE Trans. Comp. Hybrids and Manufact. Technol. CHMT-4 (1983) 355.Google Scholar
  2. 2.
    M. Yonezawa,Amer. Ceram. Soc. Bull. 62 (1983) 1375.Google Scholar
  3. 3.
    I. Burn andG. H. Maher,J. Mater. Sci. 10 (1975) 633.Google Scholar
  4. 4.
    I. Burn,Amer. Ceram. Soc. Bull. 57 (1978) 600.Google Scholar
  5. 5.
    Y. Sakabe,ibid. 66 (1987) 1338.Google Scholar
  6. 6.
    T. C. Rutt, US Pat. 3 679 950 (1972).Google Scholar
  7. 7.
    Y. H. Han, J. B. Appleby andD. M. Smith,J. Amer. Ceram. Soc. 70 (1987) 96.Google Scholar
  8. 8.
    Y. Sakabe, K. Minai andK. Wakino,Jpn J. Appl. Phys. 20 (1981) 147.Google Scholar
  9. 9.
    S. Shirasaki,Solid State Commun. 19 (1976) 721.Google Scholar
  10. 10.
    D. F. Rushman andM. A. Strivens,Trans. Faraday Soc. 42A (1946) 231.Google Scholar
  11. 11.
    R. C. de Vries andR. Roy,J. Amer. Ceram. Soc. 38 (1955) 142.Google Scholar
  12. 12.
    M. McQuarrie andF. W. Behnke,ibid. 37 (1954) 519.Google Scholar
  13. 13.
    T. Mitsui andW. Westphal,Phys. Rev. 124 (1961) 1354.Google Scholar
  14. 14.
    Z. Q. Zhuang, M. P. Harmer, D. M. Smith andR. E. Newnham, in “Proceedings of the 6th IEEE International Symposium on Application of Ferroelectrics, Bethlehem”, 1986, edited by D. M. Smith (IEEE, New York, 1986) p. 122.Google Scholar
  15. 15.
    W. J. Merz,Phys. Rev. 17 (1950) 52.Google Scholar
  16. 16.
    G. Arlt, D. Hennings andG. deWith,J. Appl. Phys. 58 (1985) 1619.Google Scholar
  17. 17.
    K. Kioshita andA. Yamaji,ibid. 47 (1976) 37.Google Scholar

Copyright information

© Chapman & Hall 1992

Authors and Affiliations

  • J. G. Park
    • 1
  • T. S. Oh
    • 1
  • Y. H. Kim
    • 1
  1. 1.Fine Ceramics LaboratoryKorea Institute of Science and TechnologyCheongryang, SeoulKorea

Personalised recommendations