Advertisement

Journal of Soviet Laser Research

, Volume 3, Issue 1, pp 61–92 | Cite as

Investigations of active medium and of optical resonators of gasdynamic lasers

  • Yu. S. Vagin
Article

Abstract

In the article is described the construction of a cw GDL based on combustion of CO, with the mixture exhausted to the atmosphere through a supersonic diffuser, as well as apparatus for the investigation of the physical properties of the active medium. The flow rate of the vibrational quanta converted into laser radiation at the input to the optical resonator is determined by calculation and experimentally. The main properties of the GDL active medium are investigated. The total losses in the optical resonator are determined and their influence on the output power is calculated. The operating conditions of the gasdynamic layer are experimentally optimized. A resonator with additional feedback is proposed.

Keywords

Radiation Atmosphere Combustion Output Power Laser Radiation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    J. D. Anderson, Gasdynamic Lasers. An Introduction, Academic Press, New York (1976).Google Scholar
  2. 2.
    S. A. Losev, Gasdynamic Lasers, [in Russian], Nauka, Moscow (1977).Google Scholar
  3. 3.
    E. T. Gerry, Laser Focus,6, No. 12, 27 (1970).Google Scholar
  4. 4.
    Philip J. Klass, Aviat. Week Space Techol., No. 8, 32–37 (1972).Google Scholar
  5. 5.
    E. Locke, IEEE J. Quantum Electron.8, No. 2, Part II, 132 (1972).Google Scholar
  6. 6.
    A. F. Clark et al., Appl. Opt.,12, No. 6, 1109 (1973).Google Scholar
  7. 7.
    A. P. Bazhulin, N. A. Irisova, V. P. Sasorov, Yu. P. Timofeev, and S. A. Fridman, Vestn. Akad. Nauk SSSR,12, 15 (1973).Google Scholar
  8. 8.
    Yu. S. Vagin et al., Laser Techniques [in Russian], No. 1, Part 2, Fiz. Inst. Akad. Nauk Preprint, Moscow (1976).Google Scholar
  9. 9.
    Yu. S. Vagin et al., Laser Techniques [in Russian], No. 1, Part 1, Fiz. Inst. Akad. Nauk Preprint, Moscow (1976).Google Scholar
  10. 10.
    A. I. Barchukov, Yu. V. Konev, A. M. Prokhorov, and V. S. Terin, Radiotekh. Elektron.,16, 996–1004 (1971).Google Scholar
  11. 11.
    A. S. Biryukov and L. A. Shelepin, Fiz. Inst. Akad. Nauk Preprint No. 59 (1973).Google Scholar
  12. 12.
    R. A. Greenberg et al., AIAA J.,10, No. 11, 1494 (1972).Google Scholar
  13. 13.
    Donald M. Kuehn, Appl. Phys. Lett.,21, No. 3, 112 (1972).Google Scholar
  14. 14.
    R. Borghi et al., Appl. Phys. Lett.,22, No. 12, 661 (1973).Google Scholar
  15. 15.
    V. N. Kroshko and R. I. Soloukhin, Dokl. Akad. Nauk SSSR,211, 829–832 (1973).Google Scholar
  16. 16.
    V. N. Kroshko, R. I. Soloukhin, and N. A. Fomin, Fiz. Goreniya Vzryva,10, 473–486 (1974).Google Scholar
  17. 17.
    J. J. Wilson, Avco Everett Research Laboratory, Gasdynamic Lasers (1974).Google Scholar
  18. 18.
    G. N. Abramovich, Applied Gasdynamics [in Russian], Nauka, Moscow (1969).Google Scholar
  19. 19.
    E. Kamke, Differentialgleichungen, Lösungsmethoden und Lösunven, Vol. 1, Chelsea, New York (1971).Google Scholar
  20. 20.
    V. I. Krylov, Approximate Calculation of Integrals [in Russian], Fizmat giz, Moscow (1959).Google Scholar
  21. 21.
    P. V. Avizonis, D. R. Dean, and R. Grotbeck, Appl. Phys. Lett.,23, No. 7, 375 (1973).Google Scholar
  22. 22.
    A. Yariv, Quantum Electronics, Wiley, New York (1967).Google Scholar
  23. 23.
    D. C. Sinclair, Appl. Opt.,3, No. 9, 1067 (1964).Google Scholar
  24. 24.
    V. V. Apollonov, A. I. Barchukov, N. V. Karlov, A. M. Prokhorov, and É. M. Shefter, Kvantovaya Elektron. (Moscow),2, 380 (1975).Google Scholar
  25. 25.
    M. J. Monsler and R. A. Greenberg, AIAA Paper No. 71-24.Google Scholar
  26. 26.
    O. Biblarz and A. E. Fuhs, AIAA Paper No. 73-141.Google Scholar
  27. 27.
    F. V. Bunkin and A. M. Prokhorov, Usp. Fiz. Nauk,114, No. 9, 3 (1974).Google Scholar
  28. 28.
    A. M. Whitman and M. J. Beran, J. Opt. Soc. Am.,60, No. 12, 1595–1602 (1970).Google Scholar
  29. 29.
    A. N. Chester, Appl. Opt.,12, No. 10, 2353 (1973).Google Scholar
  30. 30.
    G. J. Ernst and W. J. Witteman, IEEE J. Quantum Electron.,9, No. 9, 911 (1973).Google Scholar
  31. 31.
    E. Zimet, R. A. Leverance, and E. Minkler, AIAA Paper No. 73-627.Google Scholar
  32. 32.
    A. L. Hoffman and T. G. Jones, AIAA Paper No. 72-217.Google Scholar
  33. 33.
    G. D. Boyed and H. Kogelnik, Bell. Syst. Techn. J.,41, No. 7 (1962).Google Scholar
  34. 34.
    V. Ya. Balakhanov, V. K. Zhivotov, and A. R. Striganov, Dokl. Akad. Nauk SSSR,157, No. 6, 1332 (1964).Google Scholar
  35. 35.
    L. A. Vainshtein, Open Resonators and Open Waveguide [in Russian], Sov. Radio, Moscow (1966).Google Scholar
  36. 36.
    A. G. Fox and Tingye Li, Bell Syst. Tech. J.,40, No. 2, 453 (1961).Google Scholar
  37. 37.
    G. di Francia Toraldo, Quasioptics [Russian translation], Mir (1966).Google Scholar
  38. 38.
    E. R. Treacy, Phys. Lett.,15, No. 1, 37 (1965).Google Scholar
  39. 39.
    V. A. Kiselev, Radiotekh. Elektron., 16, No. 10, 2020 (1972).Google Scholar
  40. 40.
    E. A. J. Mavcaliti, USA Pat. No. 3241085. 202 (1972), cl. 331-94.5.Google Scholar
  41. 41.
    A. E. Sigman, Appl. Opt.13, No. 2, 353–367 (1974).Google Scholar
  42. 42.
    Yu. A. Anan'ev, Kvantovaya Elektron. (Moscow), No. 6, 3–34 (1971).Google Scholar
  43. 43.
    Yu. A. Anan'ev et al., Kvantovaya Elektron. (Moscow), 2, No. 9, 1952–1956 (1975).Google Scholar
  44. 44.
    A. A. Isaev et al., Kvantovaya Elektron. (Moscow),1, No. 6 (1974).Google Scholar
  45. 45.
    Patent Application 2450136/25, Laser, Yu. S. Vagin, G. I. Zavizion, V. K. Konyukhov, and V. N. Lukanin, Appl. 2 April 1977.Google Scholar

Copyright information

© Plenum Publishing Corporation 1982

Authors and Affiliations

  • Yu. S. Vagin

There are no affiliations available

Personalised recommendations