Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Quasiregular collineation groups of finite projective planes

  • 54 Accesses

  • 25 Citations

This is a preview of subscription content, log in to check access.

References

  1. [1]

    Albert, A.A.: The finite planes of Ostrom. Lecture notes. The University of Chicago 1961.

  2. [2]

    Beckenbach, E., andR. Bellman: Inequalities. Berlin-Göttingen-Heidelberg: Springer 1961.

  3. [3]

    Bruck, R.H.: Difference sets in a finite group. Trans. Amer. Math. Soc.78, 464–481 (1955).

  4. [4]

    Dembowski, P.: Verallgemeinerungen von Transitivitätsklassen endlicher projektiver Ebenen. Math. Z.69, 59–89 (1958).

  5. [5]

    —: Gruppentheoretische Kennzeichnungen der endlichen desarguesschen Ebenen. Abh. Hamburg29, 92–106 (1965).

  6. [6]

    Hall Jr.,M.: Projective planes. Trans. Amer. Soc.54, 229–277 (1943).

  7. [7]

    Ostrom, T.G.: Semi-translation planes. Trans. Amer. Math. Soc.111, 1–18 (1964).

  8. [8]

    Roth, R.: Collineation groups of finite projective planes. Math. Z.83, 409–421 (1964).

  9. [9]

    Wielandt, H.: Finite permutation groups. New York and London: Academic Press 1964.

  10. [10]

    Zassenhaus, H.: Über endliche Fastkörper. Abh. Hamburg11, 187–220 (1935).

Download references

Author information

Additional information

Both authors acknowledge support from the National Science Foundation, grant GP-6539.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Dembowski, P., Piper, F. Quasiregular collineation groups of finite projective planes. Math Z 99, 53–75 (1967). https://doi.org/10.1007/BF01118689

Download citation

Keywords

  • Projective Plane
  • Collineation Group
  • Finite Projective Plane