Advertisement

Journal of Materials Science

, Volume 27, Issue 8, pp 2001–2004 | Cite as

DO22 to L12 transition in intermetallic systems

  • U. Prakash
  • R. A. Buckley
  • H. Jones
  • C. M. Sellars
Papers

Abstract

Ternary additions of metals such as chromium, manganese, iron, cobalt, nickel, copper and zinc to tetragonal (DO22) Al3Ti are known to lead to stabilization of the cubic (L12) structure. This DO22 to L12 transition has been studied in the Al-Ti-Ni system using X-ray diffraction and scanning electron microscopy. The results show that nickel substitution has no significant effect on the lattice parameter (and therefore on the tetragonality) of the DO22 phase and that the solid solubility of nickel in the DO22 phase is very limited. The L12 phase precipitates out on addition of nickel to Al3Ti, its amount increasing with increasing nickel content of the alloy. The compositions of the DO22 and L12 phases do not change significantly with the alloy composition. These results are discussed in terms of theories of structural transitions in ordered alloys. Similar transitions have been reported in transition metal-based systems. An analysis of the transition in intermetallic systems is presented.

Keywords

Zinc Nickel Chromium Cobalt Manganese 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Int. Met. Rev. 29 (1984): Special Issue on Ordered Alloys, 123–248.Google Scholar
  2. 2.
    C. C. Koch. andN. S. Stoloff (eds), “High Temperature Ordered Intermetallic Alloys”, Materials Research Society Symposium Proceedings, Vol. 39 (Materials Research Society, Pittsburgh, PA, 1985) p. 560.Google Scholar
  3. 3.
    N. S. Stoloff, C. C. Koch andO. Izumi (eds), “High Temperature Ordered Intermetallic Alloys II”, Materials Research Society Symposium Proceedings, Vol. 81 (Materials Research Society, Pittsburgh, PA, 1987) p. 518.Google Scholar
  4. 4.
    C. T. Liu, A. I. Taub, N. S. Stoloff andC. C. Koch, “High Temperature Ordered Intermetallic Alloys III”, Materials Research Society Symposium Proceedings, Vol. 133 (Materials Research Society, Pittsburgh, PA, 1989).Google Scholar
  5. 5.
    A. Raman andK. Schubert,Z. Metallkde 56 (1965) 40.Google Scholar
  6. 6.
    Idem., ibid. 56 (1965) 99.Google Scholar
  7. 7.
    P. Virdis andW. Zwicker,ibid. 62 (1971) 46.Google Scholar
  8. 8.
    H. Mabuchi, K. Hirukawa andY. Nakayama,Scripta Metall. 23 (1989) 1761.Google Scholar
  9. 9.
    H. Mabuchi, K. Hirukawa, H. Tsuda andY. Naka-Yama,ibid. 24 (1990) 505.Google Scholar
  10. 10.
    J. P. Nic, S. Zhang andD. E. Mikkola,ibid. 24 (1990) 1099.Google Scholar
  11. 11.
    C. T. Liu,Int. Met. Rev. 29 (1984) 168.Google Scholar
  12. 12.
    C. T. Liu andH. Inouye,Met. Trans. 10A (1979) 1515.Google Scholar
  13. 13.
    R. Van Loo,Acta Metall. 21 (1973) 61.Google Scholar
  14. 14.
    W. B. Pearson, in “The Crystal Chemistry and Physics of Metals and Alloys” (Wiley, New York, 1972).Google Scholar
  15. 15.
    J. H. Van Vucht andK. H. Buschow,J. Less Common Metals 10 (1965) 98.Google Scholar
  16. 16.
    J. H. Van Vucht,ibid. 11 (1966) 308.Google Scholar
  17. 17.
    P. A. Beck,Adv. X-ray Anal. 12 (1969) 1.Google Scholar
  18. 18.
    A. K. Sinka,Trans. AIME 245 (1969) 911.Google Scholar
  19. 19.
    S. Saito andP. A. Beck,Trans. Met. Soc. AIME 215 (1959) 938.Google Scholar
  20. 20.
    M. Yamaguchi andY. Shirai, in “Dispersion Strengthened Aluminium Alloys”, edited by Y.-W. Kim and W. M. Griffith (The Minerals, Metals and Materials Society, Warrendale, PA, 1988) p. 721.Google Scholar
  21. 21.
    A. Seibold,Z. Metallkde 72 (1981) 712.Google Scholar
  22. 22.
    K. S. Kumar,Int. Met. Rev. 35 (1990) 6.Google Scholar
  23. 23.
    T. B. Massalski, in “Binary Alloy Phase Diagrams” (ASM, Metals Park, OH, 1986).Google Scholar
  24. 24.
    P. R. Munroe andI. Baker,J. Mater. Res. 6 (1991) 943.Google Scholar
  25. 25.
    W. Hume Rothery,J. Inst. Metals. 35 (1926) 295.Google Scholar
  26. 26.
    Idem., ibid. 35 (1926) 307.Google Scholar
  27. 27.
    W. Hume Rothery andG. V. Raynor, in “The Structure of Metals and Alloys” (Institute of Metals, London, 1962).Google Scholar
  28. 28.
    D. G. Pettifor,Mater. Sci. Technol. 4 (1988) 675.Google Scholar
  29. 29.
    Idem., in “High Temperature Intermetallics” (Institute of Metals, London, 1991) p. 91.Google Scholar
  30. 30.
    P. R. Subramanian, J. P. Simmons, M. G. MendiRatta andD. M. Dimiduck, in “High Temperature Ordered Intermetallic Alloys III”, Materials Research Society Symposium Proceedings, edited by C. T. Liu, A. I. Taub, N. S. Stoloff and C. C. Koch, Vol. 133 (Materials Research Society, Pittsburgh, PA, 1989) p. 51.Google Scholar

Copyright information

© Chapman & Hall 1992

Authors and Affiliations

  • U. Prakash
    • 1
  • R. A. Buckley
    • 1
  • H. Jones
    • 1
  • C. M. Sellars
    • 1
  1. 1.School of MaterialsUniversity of SheffieldSheffieldUK

Personalised recommendations