Soviet Powder Metallurgy and Metal Ceramics

, Volume 15, Issue 6, pp 473–476 | Cite as

Effect of additions of some oxides on the sintering of cr2O3 in air and in a reducing atmosphere

  • P. P. Krivoruchko
  • B. G. Alapin
  • A. I. Portnova
  • S. V. Lysak
  • É. V. Degtyareva
Test Methods and Properties of Materials


A study was made of the sintering of chromic oxide with TiO2, Al2O3, MgO, and SiO2 additions in air and under reducing conditions at temperatures of 1300–1750°C. Alumina and magnesia do not intensify the densification of Cr2O3 during calcining in air. The most effective under these conditions is an addition consisting of 5 mole % TiO2 and 2–5 mole % of a 35 wt.% Al2O3 + 65 wt.% SiO2 mixture, which enables specimens to be obtained with an apparent porosity of less than 20% and a linear shrinkage of ∼ 12%. The solid-phase sintering of chromic oxide is improved by the addition of TiO2, which forms with Cr2O3 a limited solid solution. A composite addition apparently initiates sintering with the participation of a liquid phase at temperatures above 1500°C. Under reducing conditions, of all the additions investigated only titania has a beneficial effect.


Oxide Alumina TiO2 Titania Porosity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    W. A. Fisher, West Ger. Pat. No. 1,696,685 (1970).Google Scholar
  2. 2.
    W. A. Fisher and G. Lorenz, West Ger. Pat. No. 1,090,790 (1961).Google Scholar
  3. 3.
    T. J. Taylor, J. Can. Ceram. Soc.,38, No. 1, 47 (1969).Google Scholar
  4. 4.
    P. P. Budnikov and S. G. Tresvyatskii, Dokl. Akad. Nauk SSSR,95, No. 5, 1041 (1954).Google Scholar
  5. 5.
    Matsumoto Kuniharu, Japan. Pat. No. 23,640 (1961).Google Scholar
  6. 6.
    T. H. Isherwood, US Pat. No. 3,219,466 (1965).Google Scholar
  7. 7.
    T. H. O'Dell, Brit. Pat. No. 1,096,587 (1967).Google Scholar
  8. 8.
    A. B. Belykh, M. A. Kuzenkova, and P. S. Kislyi, Poroshkovaya Met., No. 10 (1972).Google Scholar
  9. 9.
    P. D. Ownby and G. E. Joungquist, J. Am. Ceram. Soc.,55, No. 9, 433 (1972).Google Scholar
  10. 10.
    É. V. Degtyareva, B. G. Alapin, et al., Dokl. Akad. Nauk SSSR,223, No. 3, 661 (1975).Google Scholar
  11. 11.
    D. Delić, M. Gaśić, et al., Sintering Theory and Technology [Russian translation], Naukova Dumka, Kiev (1974), p. 47.Google Scholar
  12. 12.
    É. V. Degtyareva, I. S. Kainarskii, and S. B. Totsenko, Ogneupory, No. 9, 400 (1964).Google Scholar
  13. 13.
    A. S. Berezhnoi, Multicomponent Oxide Systems [in Russian], Naukova Dumka, Kiev (1970).Google Scholar

Copyright information

© Plenum Publishing Corporation 1976

Authors and Affiliations

  • P. P. Krivoruchko
    • 1
  • B. G. Alapin
    • 1
  • A. I. Portnova
    • 1
  • S. V. Lysak
    • 1
  • É. V. Degtyareva
    • 1
  1. 1.Ukrainian Scientific-Research Institute of RefractoriesUkraine

Personalised recommendations